
Refactoring Legacy Code with Static 
Analysis 

A Strategic Guide to Modernizing Mission-Critical 
Software Systems 

Executive Summary 
Organizations using static analysis for legacy code refactoring achieve 50-70% faster 
modernization timelines while dramatically reducing security risks. This paper demonstrates how 
advanced static analysis transforms legacy code maintenance from reactive firefighting into 
strategic modernization, with proven results across aerospace, automotive, and industrial 
sectors. 

You'll discover systematic approaches for code modernization, learn from real-world 
implementations that delivered measurable ROI, and understand how the right tools make 
legacy refactoring both manageable and measurable. 

 

The Legacy Code Challenge 
Technical debt consumes 23-42% of developers' time in organizations with significant legacy 
codebases. Legacy systems create maintenance bottlenecks where simple changes require 
extensive testing across interconnected systems, and bug fixes in one area unexpectedly break 
functionality elsewhere. 



Perhaps the most devastating impact is innovation paralysis. Development teams become so 
focused on "keeping the lights on" that strategic initiatives get perpetually delayed, causing 
organizations to lose competitive advantage not because their technology is inferior, but 
because legacy constraints prevent rapid market response. 

Why Legacy Modernization Can't Wait 
Three technical shifts are forcing legacy code modernization from optional to essential: 

Everything is Connected Now. The days of air-gapped industrial systems and isolated 
embedded devices are over. Medical devices connect to hospital networks. Automotive systems 
communicate with cloud services. Industrial control systems integrate with enterprise IT 
infrastructure. This connectivity brings tremendous operational benefits but also exposes legacy 
code to threats it was never designed to handle. 

Legacy code written for isolated operation suddenly needs robust input validation, secure 
communication protocols, and comprehensive error handling, capabilities that were 
unnecessary when the systems operated standalone. 

Regulatory Requirements Keep Evolving. Cybersecurity standards like ISO/SAE 21434 for 
automotive systems and IEC 62443 for industrial control systems now mandate secure 
development practices throughout the software lifecycle. Organizations with legacy codebases 
struggle to demonstrate compliance with standards that didn't exist when their systems were 
developed. 

The challenge isn't just meeting current requirements, it's proving that decades-old code meets 
modern security and safety standards without comprehensive analysis and documentation that 
most legacy systems lack. 

Cyber Threats Target Legacy Systems. Sophisticated attackers now target legacy systems 
specifically, knowing they contain exploitable vulnerabilities. High-profile attacks on industrial 
infrastructure demonstrate how legacy code flaws can have real-world consequences beyond IT 
systems. 

Unlike modern applications that benefit from security frameworks and regular updates, legacy 
systems often run the same vulnerable code for years, making them attractive targets for patient 
adversaries. 

Static Analysis Solution 
Advanced static analysis provides comprehensive visibility into legacy codebases, creating 
objective roadmaps for systematic modernization. Unlike manual code reviews that are 
impractical for million-line systems, static analysis examines entire codebases systematically, 
identifying every function, variable, and code path. 



 

Comprehensive Code Assessment 

Static analysis tools create complete inventories of code quality issues, security vulnerabilities, 
and standards compliance gaps. They map complex dependencies between components, 
highlighting areas where changes might have unexpected ripple effects. This visibility is 
essential for planning safe refactoring strategies. 

Risk-based prioritization ensures organizations focus limited resources on highest-impact 
improvements. Security vulnerabilities in internet-facing components require immediate 
attention. Performance bottlenecks in critical control loops need prioritization. Unused code 
modules can be safely removed to reduce maintenance burden. 



 

Strategic Planning Framework 

Dependency mapping reveals complex, undocumented relationships between legacy 
components. Changes in one area can break functionality in seemingly unrelated modules. 
Static analysis creates detailed dependency maps that help teams understand these 
relationships and plan changes that minimize disruption. 

Compliance gap analysis automatically checks legacy code against modern safety and security 
standards, identifying exactly which requirements are not being met and providing prioritized 
remediation roadmaps. 

Measurable Progress Tracking 



Static analysis provides objective baselines for code quality, security posture, and standards 
compliance. Teams can track improvements over time and demonstrate business value of 
modernization efforts through concrete metrics: reductions in critical vulnerabilities, 
improvements in code quality scores, and progress toward full standards compliance. 

Proven Modernization Approach 

The most successful legacy modernization efforts share three key characteristics: security-first 
prioritization, incremental improvement integrated with daily workflows, and systematic 
measurement of progress. 

Security-First Strategy. The highest priority should be eliminating critical and high-severity 
security vulnerabilities. These represent immediate risks that could have catastrophic 
consequences if exploited. Focus on the most dangerous vulnerability classes: buffer overflows, 
injection flaws, improper input validation, and memory corruption bugs. 

Incremental Integration. Most organizations allocate 20% of development time to systematic 
code improvement while continuing feature development with the remaining 80%. This ensures 
modernization makes steady progress without halting business-critical work. When developers 
work on existing code for bug fixes or features, they also address static analysis warnings in the 
same modules. 

Measured Outcomes. Track concrete improvements: number of critical vulnerabilities 
eliminated, code quality score improvements, standards compliance percentage, and developer 
productivity gains. These metrics demonstrate business value and maintain organizational 
support for continued modernization investment. 

Industry Success Stories 

NASA: Satellite Network Reliability 

When NASA needed to improve reliability of their 8-million-line satellite ground station network, 
traditional testing proved inadequate. Software defects were causing 27% of network downtime, 
but the system was too complex for exhaustive manual testing. 

Static analysis identified 585 latent defects across the massive codebase, with 59 classified as 
urgent issues that could disrupt critical operations. By systematically addressing these 
high-priority problems, NASA estimated they could reduce annual downtime by over 20 hours, 
dramatic improvement for mission-critical space communications. 



 

Key Lesson: Even the most complex legacy systems can be analyzed systematically when you 
have tools that handle massive scale while providing actionable issue prioritization. 

Continental: Automotive Safety and Security 

Continental faced modernizing legacy engine control software to meet both functional safety 
requirements (ISO 26262) and emerging cybersecurity standards (ISO/SAE 21434). Their 
legacy codebase contained thousands of MISRA C compliance violations accumulated over 
years of development. 

Rather than attempting complete rewrite, Continental used static analysis to create systematic 
remediation plans. They prioritized safety-critical violations first, then methodically improved 
code quality across their entire system, achieving modern automotive standards without the risk 
and cost of starting from scratch. 

Key Lesson: Incremental improvement guided by data-driven prioritization is more effective 
than "big bang" rewrites, especially in safety-critical industries. 

Petroleum Experts: Mission-Critical Reliability 

Petroleum Experts provides simulation software to oil and gas companies managing "billions of 
dollars of assets," making code quality absolutely essential. Their multi-million-line legacy 
codebase had accumulated technical debt that was consuming enormous developer time and 
slowing feature development. 

Static analysis revealed thousands of issues including copy-paste errors, null-pointer bugs, and 
security vulnerabilities. By systematically addressing these problems, Petroleum Experts 
dramatically improved software reliability while freeing their development team to focus on 
innovation rather than firefighting. 

"CodeSonar saves us days of debugging time by pinpointing the root cause and dependencies 
of issues," their engineers reported. Improved code quality also enhanced customer satisfaction 
as crashes and unexpected behavior became increasingly rare. 



Key Lesson: Legacy modernization improves developer productivity and customer satisfaction. 
Technical debt reduction has cascading benefits throughout the organization. 

Micrel Medical: Regulatory Compliance 

Medical device software faces unique challenges: patient safety depends on software reliability, 
while FDA regulations require demonstrated security controls throughout the development 
lifecycle. Micrel Medical Devices needed to strengthen compliance posture while improving 
quality of their Class IIb device software. 

After evaluating multiple static analysis solutions, they chose CodeSonar for its accuracy and 
comprehensive support of safety coding standards. The tool provided "the most precise and 
thorough" analysis, uncovering deeply hidden defects that would have required enormous effort 
to find through traditional testing. 

Beyond defect detection, CodeSonar's support for NASA/JPL coding rules and other safety 
standards helped Micrel generate comprehensive documentation needed for regulatory 
approval. 

 



Key Lesson: In regulated industries, tool selection matters enormously. Solutions must provide 
both technical excellence and regulatory compliance support. 

Telit: IoT Security at Scale 

Telit connects "millions of things" to networks worldwide, facing the challenge of ensuring rapid 
development cycles don't compromise security and reliability. Legacy code components needed 
integration with new connectivity features while maintaining strict security standards. 

Telit integrated static analysis directly into their development pipeline, creating automated 
quality gates that prevent insecure code from reaching production. "Any code committing with a 
high-priority warning is blocked until fixed," ensuring quality improvements are maintained as 
new features are added. 

The developer-friendly interface was crucial for team adoption. CodeSonar's visual 
representations helped developers understand that warnings represented legitimate security 
issues, building confidence in the tool and encouraging proactive use. 

Key Lesson: Developer adoption is critical for success. Tools must provide clear, actionable 
feedback that helps developers improve rather than just highlighting problems. 

CodeSonar Advantage 

CodeSonar was designed specifically to handle the complexity, scale, and architectural 
challenges that characterize mission-critical systems. 

Technical Differentiators 

Whole-Program Analysis. Unlike pattern-matching tools, CodeSonar performs comprehensive 
dataflow and symbolic execution analysis across entire programs. This deep analysis capability 
is essential for legacy systems where security vulnerabilities often span multiple modules and 
components. 



 

Massive Scale Support. Legacy systems often contain millions of lines of code accumulated 
over decades. CodeSonar scales efficiently to handle even the largest codebases without 
requiring organizations to break systems into artificial chunks. 

Industry-Specific Value 

Built-in Standards Compliance. CodeSonar includes comprehensive checkers for major 
standards including MISRA C/C++, AUTOSAR C++, CERT security rules, and ISO 26262 
requirements. This built-in support is crucial for organizations facing compliance audits—teams 
can generate comprehensive compliance reports automatically and focus efforts on addressing 
identified violations. 

Safety Certification. CodeSonar itself is certified for use in safety-critical development under 
ISO 26262, IEC 61508, and EN 50128 standards. This certification is essential for organizations 
that must demonstrate their development tools meet the same quality standards as their 
products. 

Integration and ROI 

CI/CD Pipeline Integration. CodeSonar integrates seamlessly with popular CI/CD tools 
including Jenkins, GitLab, and GitHub, allowing teams to automatically analyze code changes 
for new security vulnerabilities or quality regressions. 



 

 

Measurable Business Value. CodeSonar provides concrete metrics that demonstrate ROI: 
reductions in security vulnerabilities, improvements in code quality scores, progress toward 
standards compliance, and decreased debugging time. NASA's experience exemplifies this 
value—fixing identified urgent defects could "halve the network's annual downtime, saving 
approximately 20.65 hours of service outages per year." 

Getting Started Roadmap 

Initial Assessment (Week 1-2) 

Run comprehensive static analysis on your complete legacy codebase to establish baseline 
metrics: total lines of code, critical security vulnerabilities, code quality scores, and standards 
compliance gaps. Document current state objectively to measure future progress. 

Priority Setting (Week 3-4) 

Categorize identified issues by business risk, not just technical severity. Security vulnerabilities 
in internet-facing components warrant immediate attention. Safety-critical control logic needs 
careful analysis and planning. Unused legacy modules might be candidates for removal rather 
than improvement. 



Create priority matrix considering both technical risk and business impact to guide resource 
allocation throughout your modernization effort. 

First 90 Days 

Focus exclusively on critical and high-severity security vulnerabilities in your first quarter. 
Address these immediate risks before beginning broader code quality improvements. Establish 
development workflow integration so teams address static analysis warnings when working on 
existing code for bug fixes or features. 

Scaling Success 

After establishing security foundation, expand to systematic code quality improvement targeting 
20% of development time for modernization while maintaining 80% for feature development. 
Track concrete improvements through security metrics, code quality scores, and developer 
productivity gains. 

Integrate static analysis into CI/CD pipelines to prevent quality regressions and ensure new 
code meets standards from the start. 

Conclusion 
Legacy code doesn't have to be a perpetual burden on your organization. With systematic 
approaches and the right tools, decades-old systems can be transformed into secure, 
maintainable, and compliant assets that enable rather than constrain business objectives. 

Organizations that proactively modernize their legacy code gain significant competitive 
advantages in security, maintainability, and development velocity. Those that defer 
modernization find themselves increasingly constrained by technical limitations and security 
risks. 

The most successful legacy modernization efforts use data-driven prioritization, integrate 
improvement into daily workflows, and focus on sustainable incremental progress rather than 
disruptive rewrites. Advanced static analysis provides the visibility, prioritization, and 
measurement capabilities that make legacy modernization both manageable and measurable. 

Your legacy code built your business. Now it's time to ensure it can sustain and grow 
your future. 


	Refactoring Legacy Code with Static Analysis 
	A Strategic Guide to Modernizing Mission-Critical Software Systems 
	Executive Summary 
	The Legacy Code Challenge 
	Why Legacy Modernization Can't Wait 
	Cyber Threats Target Legacy Systems. Sophisticated attackers now target legacy systems specifically, knowing they contain exploitable vulnerabilities. High-profile attacks on industrial infrastructure demonstrate how legacy code flaws can have real-world consequences beyond IT systems. 

	Static Analysis Solution 
	Industry Success Stories 
	NASA: Satellite Network Reliability 
	Continental: Automotive Safety and Security 
	Petroleum Experts: Mission-Critical Reliability 
	Micrel Medical: Regulatory Compliance 
	Telit: IoT Security at Scale 

	CodeSonar Advantage 
	Technical Differentiators 
	Industry-Specific Value 
	Integration and ROI 

	Measurable Business Value. CodeSonar provides concrete metrics that demonstrate ROI: reductions in security vulnerabilities, improvements in code quality scores, progress toward standards compliance, and decreased debugging time. NASA's experience exemplifies this value—fixing identified urgent defects could "halve the network's annual downtime, saving approximately 20.65 hours of service outages per year." 
	Getting Started Roadmap 
	Initial Assessment (Week 1-2) 
	Priority Setting (Week 3-4) 
	First 90 Days 
	Scaling Success 

	Conclusion 
	Legacy code doesn't have to be a perpetual burden on your organization. With systematic approaches and the right tools, decades-old systems can be transformed into secure, maintainable, and compliant assets that enable rather than constrain business objectives. 
	Organizations that proactively modernize their legacy code gain significant competitive advantages in security, maintainability, and development velocity. Those that defer modernization find themselves increasingly constrained by technical limitations and security risks. 
	The most successful legacy modernization efforts use data-driven prioritization, integrate improvement into daily workflows, and focus on sustainable incremental progress rather than disruptive rewrites. Advanced static analysis provides the visibility, prioritization, and measurement capabilities that make legacy modernization both manageable and measurable. 


