
Using a SBOM to Make Better
Software Security Decisions

WWW.CODESECURE.COM

IN
TR

O
D

U
C

TI
O

N

Software supply chain attacks are on the rise. Many of the high-profile cybersecurity news stories such

the SolarWinds attack and the Apache Log4j vulnerability tell a tale of attackers exploiting vulnerabilities

and weaknesses in the software supply chain. The mode of operation can range from fairly simple

exploits of known vulnerabilities like Log4Shell to very sophisticated attacks, sponsored by nation state

threat actors such as the SolarWinds supply chain attack.

The annual spend on enterprise software (also known as commercial off the shelf or COTS software) is

now approaching $600 billion with a growth rate of 11.5%. Yet, given the magnitude on this investment,

how much is spent on ensuring the all this COTS software is secure? In relative terms, enterprises

are spending a pittance on securing their software supply chain versus their investment in software

applications to support their operations. This is why vulnerable COTS software is so dangerous, as

vulnerabilities can be “hidden” in open source components (Log4j) within the products, and customers

are left with a false sense of security.

In a 2021 Forrester’s report on the State of Application Security, a survey of companies showed that

the most likely avenue of a cyberattack was software vulnerabilities in their applications. Open source

software plays a key role in the prevalence of these vulnerabilities. Its use is increasing year over year

and the number of vulnerabilities is increasing even faster.

Additionally, a 2021 Osterman Research Report found that 100% of widely used COTS software

analyzed by CodeSecure CodeSentry (without access to source code) contained vulnerable open

source components. A worrying 85% of those analyzed applications had critical vulnerabilities with

a common vulnerability scoring system (CVSS) score of 10.0. The most vulnerable applications were

everyday email and online meeting applications. All the applications are widely used applications and

the presence of these critical vulnerabilities presents a serious cybersecurity risk to organizations as the

likelihood and impact of a successful cyberattack is very high. The result of this research makes it clear

that much more needs to be done to secure the software supply chain.

So, that begs the question of what can enterprises
do to improve this situation?

https://en.wikipedia.org/wiki/Log4Shell
https://cisomag.eccouncil.org/solarwinds-hack-russia/
ttps://www.saastr.com/gartner-forecasts-enterprise-software-spending-increases-another-110-billion-in-2022/
https://www.content.shi.com/SHIcom/ContentAttachmentImages/SharedResources/PDFs/F5/F5-031821-Forrester-Report-The-State-Of-Application-Security-in-2020.pdf
http://codesentry.grammatech.com/wp-form-osterman-research
https://www.grammatech.com/codesentry-sca
https://nvd.nist.gov/vuln-metrics/cvss

The traditional approach is based on trusting each of your vendors and assuming they

have done the correct due diligence during the development of their software. Formally,

this would mean asking the vendor to attest to their good software engineering practices

during the procurement process and disclose the security practices for supporting their

software. Customers, on the other hand, are left to investigate the security of the products

they use through associations or user groups in order to share information about vendor

risk and software security.

These approaches are clearly not enough as evidenced by the Apache Log4j vulnerability.

Despite the best intentions of software vendors, too many security vulnerabilities are

lurking in third-party and open source components in COTS software. This represents a

software security blind spot that the vendors themselves may not even know about. The

key artifact needed to shed light on this blind spot is the software bill of materials (SBOM).

The SBOM is an inventory report of the software components that make up a software

product. Just like the labels on food products, a list of ingredients and nutritional

information. The SBOM is same thing: A full disclose all of the components that are built

into a product. However, just as organizations are struggling to receive an SBOM from

their vendor they are also struggling with what to do with an SBOM once they have it.

What if the software you’ve procured has critical vulnerabilities? How do you deal with the

information and how do you deal with your vendors?

HOW CAN ENTERPRISES IMPROVE SOFTWARE SECURITY POSTURE?

Findings from Osterman report show that all enterprise

applications use open source components and most

had known critical exploitable vulnerabilities in them. It

is obvious that existing perimeter security approaches

won’t be enough to defend organizations from threats

against these software vulnerabilities. The goal of

automating software supply chain security is to get

deep visibility into the products you are purchasing

and have deployed to support critical functions of

the business. The SBOM plus detailed vulnerability

information is needed to truly understand the security

risk of the software within your organization. With new

technology that analyzes binary applications without the

need to access source code, enterprise security teams

can now produce their own detailed SBOMs along high

level dashboards to help analyze and summarize the

findings. In addition, a software vulnerability report is

critical in cataloging the known (N-day and Zero-day)

vulnerabilities in the software components outlined in the

SBOM. An example of a CodeSentry executive summary

dashboard is shown below:

A
U

TO
M

AT
IN

G
 S

B
O

M
 G

EN
ER

AT
IO

N

A
N

D
 V

U
LN

ER
A

B
IL

IT
Y

 D
ET

EC
TI

O
N

An example executive summary dashboard from CodeSentry.

The generated SBOM needs be both human and machine readable to export for

disclosure/sharing with other organizations and integrate with other security and risk

solutions. Human readable formats should provide easy navigation of the components

and the vulnerabilities reported. Machine readable outputs such as CycloneDX, SPDX

and others must conform to industry standards to support open interchange. An example

of the SBOM report from CodeSentry is shown below.

Looking at the example application above, it’s clear there are serious vulnerabilities in the

software, both high and critical severity security issues, that warrant concern about using this

software in an enterprise environment.

Additional information in the SBOM can include licensing. Checking license information helps

ensure compliance and reduces risk that the software is released or consumed with unlicensed

components. Having license information can also help with forensics when checking what

version of the open source component may be vulnerable such as which version of Apache

Log4j included the critical Zero-day vulnerability.

An example of a detailed SBOM from CodeSentry

Given this information, what is the next step?

With all the data you know have from using a solution like CodeSentry to produce a SBOM, security score, vulnerability

report, license information, etc., it seems like a daunting task to figure out what you do with it all and how to deal with

fallout from the discovery of critical vulnerabilities. Like most issues with security, it’s important to evaluate results in

terms likelihood and impact. Likelihood is a determination the possibility of an attack succeeding using the discovered

vulnerability. Impact is the possible damage caused by a successful attack. This impact needs to consider not just the

immediate damage or exposure but also the long-term impact to your brand, bottom line, and customer experience.

Considering that, on average in the United States, companies paid $6.53 million per data breach, judging potential impact

needs to be taken seriously.

A good way to evaluate the critical open source vulnerabilities found in COTS software is with the risk quadrant as shown

below. For example, software with some vulnerabilities, deemed unlikely to be exploited with low impact, could be approved

for purchase, renewal or maintenance contract by simply accepted the low risk level. Obviously, software with high impact,

high likelihood of attack vulnerabilities may need to be rejected (more on that below).

WHAT TO DO WITH SBOM RESULTS?

The security vulnerability risk quadrant

https://www.linkedin.com/pulse/cost-data-breach-loss-remediation-rachel-holdgrafer

There is more subtlety to the decision making since it is often not possible to simply reject

software that is critical to your business. This adds another dimension to the decision making and

the approach taken with the software vendor. Using SBOMs in the COTS procurement process

is relatively new territory but the assumption here is the both the customer (you) and the vendor

are going to act in good faith with the aim to improve the security of the product and reduce the

security risk over time. You can also apply this thinking to software you already have deployed

today by analyzing what’s most critical to your business and making more intelligent security

decisions. The illustration below shows a more nuanced decision process to follow once SBOM

results are in-hand.

Decision making process for handling SBOM resultsW

APPROVE/REJECT

Let’s start with the more clear-cut decisions (in the top left of the

diagram above.) If the SBOM and vulnerability report indicate an

unacceptable number of high severity vulnerabilities and the risk

is just too high to use as-is, then the product should be rejected.

Similarly, if the product indicates only minor concerns, then the

product can be accepted, with the usual caution that should

accompany new products.

CONDITIONALLY APPROVE

In the case where products do have some security issues (see

top right above) but the risks outweigh the business needs

for the software, the product can be conditionally approved.

In these cases, the corporate information security team can

implement compensating security controls for the deployment

of the product by monitoring potential threat activity targeting

known vulnerabilities. Additionally, working with the vendor to

remediate the risk is essential as they may be unaware of these

vulnerabilities. Disclosure and cooperation are key.

CONDITIONALLY REJECT

If the software product is business-critical but the security risk

is just too high (see bottom half above), the product can be

conditionally rejected. In such cases, the decision to proceed with

deployment will depend on just how critical the software is to the

business. In the case where security importance is too high, then

you can insist the issues are fixed before deployment, (bottom right

above). Or, are you willing to wait for a new version of the software

that addresses the most critical security issues before accepting it.

Having tools, such as CodeSentry, keeps vendors honest as you

can independently verify the issues are indeed resolved.

In the extreme case where the software product is critical to the

business and required for daily operations, then it might make

sense to negotiate financial, legal and liability terms with its

use with the vendor (bottom left above). For example, financial

compensation for a data breach, a significant amount which has

both a business and reputation impact on you as the customer.

Although relatively new territory, this is the reality that software

vendors need to adjust to as customers start to improve their

software supply chain security. The days of blindly trusting

software vendors are over as the risk is far too great.

https://csrc.nist.gov/glossary/term/compensating_security_control

The annual spend on enterprise software is hundreds of billions. Yet, enterprises are spending a pittance on

securing their software supply chain versus this investment. Most, if not all, commercial products use some sort

of open source in their composition and 85% of these applications were found to have critical vulnerabilities

according to recent research. Clearly more has to be done to improve the security the software supply chain and

ensure a strong enterprise security posture.

Traditionally, software vendors were trusted to deliver secure products. However, those days of blind trust are

gone. Despite the best intentions of software vendors, too many security vulnerabilities are lurking in COTS

software. The key artifact needed with software procurement is the software bill of materials (SBOM).

As SBOMs gain traction in the marketplace the next logical step is to use the results to improve your software

supply chain from the procurement process to what is already deployed today. Using the leverage that a tSBOM

provides, it’s now possible to hold software vendors accountable. Evaluating software in terms of a risk quadrant

is recommended with various accept and reject scenarios. Based on business needs and risk profile, you can

make more informed decisions on software supply chain security to proactively reduce risk and eliminate threats

in the software that runs your business.

S
U

M
M

A
R

Y

For more information or to request a CodeSentry

demo, contact Code Secure or visit

www.CodeSecure.com

Email: sales@codesecure.com

© CodeSecure, Inc. All rights reserved.

