
STATIC ANALYSIS, RAILWAY SAFETY-CRITICAL SOFTWARE, AND EN 50128

1 TECHNICAL WHITEPAPER

TRUSTED LEADERS OF SOFTWARE ASSURANCE AND ADVANCED CYBER-SECURITY SOLUTIONS
WWW.GRAMMATECH.COM

STATIC ANALYSIS, RAILWAY SAFETY-CRITICAL
SOFTWARE, AND EN 50128

STATIC ANALYSIS, RAILWAY SAFETY-CRITICAL SOFTWARE, AND EN 50128

2 TECHNICAL WHITEPAPER

Transportation systems (railway systems in particular) are a growing market that increasingly relies
on software for command, communication, and control. Due to the impact of errors and accidents
in this environment, software is developed to strict standards, including EN 50128. This standard
is very specific on the use of good programming practices, tools, and techniques. This paper
discusses safety-critical software affordability and how static analysis tools like GrammaTech’s
CodeSonar increase developer productivity and satisfy various EN 50128 requirements.

THE SAFETY-CRITICAL SOFTWARE AFFORDABILITY WALL

Software has become the leading cost of safety-critical systems. For example, one third of new air-
plane costs is in software and software development, and in automobiles, 25% of the capital costs
of a new vehicle are now electronics (including software). Software has afforded amazing new
capabilities, but its exponential growth and associated costs have made it effectively unaffordable:

Figure 1: Source: SEI, “Virtual Integration for Improved System Design”, Redman et. al, 2010

Clearly, the in-step increase in development costs for larger systems has to change. In line with this
reality, various processes and techniques have been proposed. Amongst those is the use of tools
– specifically static analysis – to improve the test coverage and to detect defects that traditional
testing cannot. In fact, both SEI and NASA recommend static analysis as an indispensable tool in
safety-critical software development.

THE EXPONENTIAL COST OF FAILURE

Safety-critical software is expensive to develop and static analysis tools are highly recommended
by both certification standards and practitioners in the field, to prevent exorbitant costs. Software
failures in manufactured and shipped products can drastically escalate costs, from recalls to liti-
gation to damaged reputation. A significant software failure can have almost unbounded financial

STATIC ANALYSIS, RAILWAY SAFETY-CRITICAL SOFTWARE, AND EN 50128

3 TECHNICAL WHITEPAPER

impact – studies have shown that defects cost 100 times more to fix in production than in early
phases of development.

As pointed out by Capers Jones (2009), looking at a cost-per-defect metric alone is misleading
since it doesn’t factor in the volume of defects and the fact that the cost to find and repair a de-
fect is often the same over time (something developers are quick to point out). For safety-critical
embedded systems, however, the cost of repair is higher than other industries. If a safety-critical
defect isn’t fixed on time (or worse, purposely hidden), the financial impact can escalate to legal
liability and impact of future revenue.

Considering the typical software development lifecycle illustrated by the V-model below, we can
consider the relative benefits of static analysis at each phase of development. The V-model is a
good example here, being featured in many of the safety-critical software certification standards
(e.g. ISO 16508 and 26262).

Figure 2: The V-model of system development, often referenced in safety critical standards such as ISO 16508
and 26262.

Rather than looking at the traditional cost-per-defect over time or per phase, which Jones (2009)
argues is true mathematically but doesn’t reflect what is seen in practice, the more revealing data
is the cost-per-defect per relative volume of defects (as volume of defects decreases over time and
each phase of development).

STATIC ANALYSIS, RAILWAY SAFETY-CRITICAL SOFTWARE, AND EN 50128

4 TECHNICAL WHITEPAPER

Figure 3: The total cost and cost per defect as the volume of defects diminishes. Source: Capers Jones (2009)

What is interesting about Figure 3 (note the development phase order), is that the cost per de-
fect at each phase goes go up as expected, but total costs are going down due to the decreased
volume of defects. In practice, it doesn’t take longer to find and fix bugs at each phase, but the
costs are still there despite diminished volume. It’s worth noting, also, that as a product matures
into operation and maintenance (not covered in the chart), cost-per-defect is much higher due to
the impact of servicing a fielded product. The other intangible costs such as damage to brand and
loss of future customers and income, are still additional factors to consider.

THE ROLE OF STATIC ANALYSIS IN MAKING RAILWAY SOFTWARE SAFER AND AFFORDABLE

The EN 50128 standard is specific about the use of static analysis tools “using a customizable set
of Coding Standards, Control Flow and Data Flow Analysis Rules” and is highly recommended for
SIL 1 to 4. Interestingly, the standard calls to “Use the inter-procedural Control Flow Analysis mod-
ule to find variables in use before being initialized, buffer overflows, resource leaks etc.” As this is a
highly recommended practice, it’s clear that static analysis is an important part of the safety-critical
development toolkit.

Static analysis tools provide significant productivity gains to software teams seeking stringent soft-
ware safety certification. Many safety standards require high levels of code coverage (proof that
tests executed most, if not all, statements and conditions). Although this is very exhaustive, it’s very
expensive to do and must be repeated in each major phase of development (unit, integration and
system testing). The criticality of the software dictates the level of coverage with some less-critical
software requiring no formal test coverage (e.g. aircraft on-board entertainment). Testing code
coverage is one metric to evaluate software quality by, but there are cases where it doesn’t catch

STATIC ANALYSIS, RAILWAY SAFETY-CRITICAL SOFTWARE, AND EN 50128

5 TECHNICAL WHITEPAPER

everything. Using a qualified tool as part of the software development process from early stages of
development can have significant benefits:

• Bugs that coverage-based testing miss: Testing software based on coverage metrics is
inherently unit-based (although coverage is evaluated at a system level as well). Concurren-
cy errors and security vulnerabilities are two key instances of defects that can be missed
even during rigorous testing. Concurrency is often tough to program correctly and can yield
errors (e.g. race conditions) that are undetected until some unforeseen condition during
operation. Security vulnerabilities do manifest as bugs in the code – the conditions creating
the error are often due to types of input not considered during testing. Static analysis can
discover these errors early and prevent them from being show-stoppers late in the devel-
opment cycle.

•	 Detecting defects early: Rigorous testing can discover most defects in software, but it’s
expensive and extremely time-consuming. Discovering and fixing these bugs when writing
the code is also considerably cheaper than later in the development cycle (defect discovery
is exponentially more expensive over time). Static analysis can detect bugs in the code as
it is written, as part of a developer’s development environment, greatly reducing the down-
stream cost of defects.

•	 Managing the software supply chain: Use of third-party code such as commercial off-
the-shelf software (COTS) and open-source software is a fact of life in embedded software
development. Some safety standards consider any software that isn’t developed to the
specific standard as Software Of Unknown Pedigree (SOUP) -- software that needs to be
looked at carefully for inclusion in the system. Static analysis tools can analyze third-party
source and binaries to discover defects and security vulnerabilities in software that could
be impossible to test otherwise (without including it and running it, an expensive option).

•	 Accelerating	certification	evidence: Static analysis tools (and many other testing and life-
cycle management tools) provide automated documentation to support testing, coding
standard, and quality/robustness evidence. Much of the manpower used in safety certifica-
tions is documentation, evidence production, and automation. Static analysis reduces this
burden significantly.

SOURCE CODE COMPLIANCE

The EN-50128 standard is very clear on using good programming techniques, such as modularity,
components, structured and object-oriented programming. It also requires the use of design and
coding standards, and language subsets such as MISRA C. In fact, these coding standards are
mandatory for higher safety integrity levels SIL 3 and 4. Static analysis tools like CodeSonar are
useful and effective in enforcing coding standards, whether they are widely-used standards such
as MISRA C, or customized versions specific to your application.

STATIC ANALYSIS, RAILWAY SAFETY-CRITICAL SOFTWARE, AND EN 50128

6 TECHNICAL WHITEPAPER

SATISFYING EN 50128 REQUIREMENTS

The following table illustrates how specific EN 50128 requirements are met with a static analysis
tool such as GrammaTech’s CodeSonar. In many cases, the techniques/practices are highly rec-
ommended, if not mandatory, at the most critical levels.

Table 1: EN 50128 requirements specifically met y static analysis tools and the recommendation level. Ref-
erences are to specific clauses in EN 50128. Legend: R = recommended, HR = highly recommended, M =
mandatory

EN 50128 CERTIFIED SOFTWARE DEVELOPMENT TOOLS

CodeSonar is an EN 50128 certified tool which means that a certification body (TÜV SÜD Saar
GmbH in this case) has analyzed the functionality of the tool and its development process and
certified that it satisfies the requirements necessary for usage in developing safety-critical software.
Why is this important? Tools that are used in the development of safety-critical software must be
documented and their results analyzed. Tools that are not certified require further scrutiny from
certification bodies, possibly increasing workload and risk on the development team.

STATIC ANALYSIS, RAILWAY SAFETY-CRITICAL SOFTWARE, AND EN 50128

7 TECHNICAL WHITEPAPER

CONCLUSION

Static analysis tools have a critical role to play in railway safety-critical software development. The
EN 50128 standard for railway software systems is clear in its requirements, highly recommending
static analysis for any system SIL 1 or above. Supporting the certification process with certified
tools reduces risk, costs, and time.

Despite rigorous testing, failures still occur in safety-critical software, with catastrophic effects in
human and economic terms. Static analysis tools are essential to ensure the development of soft-
ware that is secure, safe, and high quality. In some cases, concurrency errors and tainted data
vulnerabilities are difficult to detect with traditional functional testing. Finding and resolving these
defects before manufacturing pays huge dividends in time and costs.

By increasing development and testing productivity and finding bugs that are missed by regular
testing, static analysis plays a key part in breaking through the safety-critical software affordability
crisis.

STATIC ANALYSIS, RAILWAY SAFETY-CRITICAL SOFTWARE, AND EN 50128

8 TECHNICAL WHITEPAPER

REFERENCES

Virtual Integration for Improved System Design, Redman et. al, 2010

Safety critical software and development productivity, O. Benediktsson, 2000

Four Pillars for Improving the Quality of Safety-Critical Software- Reliant Systems, SEI, 2013

The Power of Ten – Rules for Developing Safety Critical Code, Gerald Holzmann, Jet Propulsion
Laboratory

The Economic Impacts of Inadequate Infrastructure for Software Testing, NIST, 2002

A Short History of the Cost per Defect Metric, Capers Jones, 2009

GrammaTech, Inc. is a leading developer of software-assurance tools and advanced cyber-
security solutions. GrammaTech helps organizations develop and release high quality software,
free of harmful defects that cause system failures, enable data breaches, and increase corporate
liabilities in today’s connected world. GrammaTech’s CodeSonar is used by embedded devel-
opers worldwide.

CodeSonar is a registered trademark of GrammaTech, Inc.
© GrammaTech, Inc. All rights reserved.

