
REDUCE AUTOMOTIVE SOFTWARE FAILUIRES WITH STATIC ANALYSIS

1 TECHNICAL WHITEPAPER

TRUSTED LEADERS OF SOFTWARE ASSURANCE AND ADVANCED CYBER-SECURITY SOLUTIONS

WWW.GRAMMATECH.COM

PROTECTING AGAINST TAINTED DATA IN
EMBEDDED APPS WITH STATIC ANALYSIS

REDUCE AUTOMOTIVE SOFTWARE FAILUIRES WITH STATIC ANALYSIS

2 TECHNICAL WHITEPAPER

INTRODUCTION

Attacks against embedded systems are growing in frequency as malicious hackers
become more sophisticated in their methods. These vulnerabilities are being exploited
by hostile users to gain access to a system so they may subvert its use. These exploits
are typically triggered when a hostile user sends data over an input channel.

Programmers can defend against these defects by treating input data as potentially
hazardous (tainted) and carefully checking the data for validity before use. It is chal-
lenging, though, to find these locations because it requires manually tracing the flow
of data through the program. This paper describes a static analysis technique – taint
analysis – that can be used to find how potentially hazardous inputs can flow through
a program to reach sensitive parts of code, empowering developers to identify and
eliminate these dangerous vulnerabilities much more effectively.

BACKGROUND

As embedded applications become more feature-rich, the risks of security vulnerabil-
ities are increasing. For example, electronic systems in automobiles have been proven
to be at particular risk because cars are an
especially juicy target for attackers. Researchers demonstrated recently that it was
relatively easy to find software security vulnerabilities in a late-model car and exploit
them successfully to remotely unlock the doors and even start the engine.

Until recently, hackers had not been frequently targeting embedded systems because
doing so required physical access to the device. However, with the accelerating net-
work connectivity of embedded devices, malicious hackers have a new, virtual attack
path. Despite the trend toward greater device connectivity, awareness of the risks of
insecure code is still low among embedded developers.

In the parlance of secure programming, unchecked input values are said to be taint-
ed. Tainted data vulnerabilities should always be a concern for developers, even when
security is not as important because tainted data values also cause quality issues in-
cluding unexpected device behavior and system crashes. Any software that reads in-
put from any type of sensor should treat all values from the sensor as potentially
dangerous. The values might be out-of-range due to a hardware failure, and if the
program is not prepared to check the values, then they might cause the software to
crash later. The same techniques that defend against security vulnerabilities can also
be used to defend against rogue data values, so taint analysis techniques are also ef-
fective at finding and improving the quality of the most risky parts of the code.

Systems that are comprised of code supplied by several different vendors, or sources
such as open-source code or code from trusted third parties, are at particular risk. This
is because research has proven that security vulnerabilities proliferate at the boundar-
ies between code components, often due to innocent disagreements in interpretation
of the interface specifications.

REDUCE AUTOMOTIVE SOFTWARE FAILUIRES WITH STATIC ANALYSIS

3 TECHNICAL WHITEPAPER

Programmers can defend against such defects by treating inputs from potentially risky
channels as hazardous until the validity of the data has been checked. It can be diffi-
cult to check that a program handles tainted data properly because doing so involves
tracking its flow through the structure of the code. This can be tedious, even for
relatively small programs, and for most real-world applications, it is infeasible to do
manually.

EXPLOITING PROGRAMMING ERRORS WITH TAINTED DATA

The biggest risk of using values read from an unverified channel is that an attacker can
use the channel to trigger security vulnerabilities or cause the program to crash. Many
types of issues can be triggered by tainted data, including buffer overruns, SQL injec-

What is Tainted Data?

TAINT SOURCES, SINKS, AND CLEANSERS

In the context of taint analysis, a taint source is a
location in the program where data is being read
from a risky source. For instance, in the example
on the next page, it is the call to getenv().

A taint sink is a location to which tainted data
should not flow, unless it has been checked for
validity, such as the call to strcpy() in the example.

Once a value has been checked, it is said to have
been cleansed of the taint.

Programs take input from multiple sources, so the
environment in which the program will execute
determines the level of risk associated with each
source.

A PROGRAM’S ATTACK SURFACE

Any program may have other kinds of inputs that
could potentially be hazardous. A program, for ex-
ample, that reads input from a device with an
infrared sensor should probably consider that
channel as dangerous.

Security analysts define the points of exposure to
a potentially hostile attacker as the program’s
attack surface. To assess a program’s risk, it is
useful to first gain an understanding of what its
attack surface is, and this corresponds closely to
the program’s taint sources.

Taint sources include the following:

 » Environment variables

 » File contents

 » File metadata, such as a file’s permissions or datastamps

 » The network

 » Network services, such as the results of a DNS query

 » The system clock

 » The registry as found on Windows systems

REDUCE AUTOMOTIVE SOFTWARE FAILUIRES WITH STATIC ANALYSIS

4 TECHNICAL WHITEPAPER

tion, command injection, cross-site scripting, arithmetic overflow, and path traversal.
(For more details on these and other classes of defect, see the Common Weakness
Enumeration at http://cwe.mitre.org.) Many of the most damaging cyber-attacks in
the last two decades have been caused by the infamous buffer overrun. As this is such
a pervasive vulnerability, and because it illustrates the importance of taint analysis, it
is worth explaining in some detail.

There are several ways in which a buffer overrun can be exploited by an attacker, but
here we describe the classic case that makes it possible for the attacker to hijack the
process and force it to run arbitrary code. In this example, the buffer is on the stack.
Consider the following code:

void config(void)
{
 char buf[100];
 int count;
 …
 strcpy(buf, getenv(“CONFIG”));
 …
}

In this example, the input from the outside world is through a call to getenv that re-
trieves the value of the environment variable named “CONFIG”.

The programmer who wrote this code was expecting the value of the environment
variable to fit in the buffer, but there is nothing that checks that this is so. If the at-
tacker has control over the value of that environment variable, then assigning a value
whose length exceeds 100 will cause a buffer overrun to occur. Because buf is an
automatic variable, which will be placed on the stack as part of the activation record
for the procedure, any characters after the first 100 will be written to the parts of
the program stack beyond the boundaries of buf. The variable named count may be
overwritten (depending on how the compiler chose to allocate space on the stack). If
so, then the value of that variable is under the control of the attacker.

This is bad enough, but the real prize for the attacker is that the stack contains the
address to which the program will jump once it has finished executing the procedure.
To exploit this vulnerability, the attacker can set the value of the variable to a special-
ly-crafted string that encodes a return address of his choosing. When the CPU gets
to the end of the function, it will return to that address instead of the address of the
function’s caller.

Now, if the code is executed in an environment where the attacker does not have
control of the value of the environment variable, then it may be impossible to exploit
this vulnerability. Nevertheless, the code is clearly very risky and remains a liability if
left unfixed. A programmer might also be tempted to re-use this code in a different
program where it may not be safe to run.

http://cwe.mitre.org

REDUCE AUTOMOTIVE SOFTWARE FAILUIRES WITH STATIC ANALYSIS

5 TECHNICAL WHITEPAPER

This example is taking its input from the envi-
ronment, but the code would be just as risky
if the string was being read from another in-
put source, such as the file system or a network
channel. The most risky input channels are those
over which an attacker has control.

As mentioned, manually finding program errors
that are sensitive to tainted values is extremely
time-consuming, so automation is the best ap-
proach.

AUTOMATED TAINT ANALYSIS

Taint analysis is a form of static analysis. Before
describing how it is done, we start with a brief
introduction to the class of static analysis tools
that are capable of implementing taint analysis.

Roughly speaking, advanced static-analysis
tools work as follows. First, they must create a
model of the entire program, which they do by
reading and parsing each input file. The model

consists of representations, such as abstract-syntax trees for each compilation unit,
control-flow graphs for each subprogram, symbol-tables, and the call graph. Check-
ers that find defects are implemented in terms of various kinds of queries on those
representations. Superficial bugs can be found by doing pattern matching on the
abstract-syntax tree or the symbol tables.

The really serious bugs – those that cause the program to fail, such as null pointer
dereferences, buffer overruns, etc. – require sophisticated queries to find. Those que-
ries can be thought of as abstract simulations. The analyzer simulates the execution
of the program, but instead of using concrete values, it uses equations that model the
abstract state of the program. If an anomaly is encountered, a warning is generated.

Static analysis tools are useful because they are good at finding defects that occur
only in unusual circumstances, and because they can do so very early in the develop-
ment process. They can yield value before the code is even ready to be tested. They
are not intended to replace or supplant traditional testing techniques, but instead are
complementary.

Figure 1 below shows an example buffer overrun warning report from CodeSonar.
The report shows the path through the code that must be taken in order to trigger the
bug. Interesting points along the way are highlighted. An explanation of what can go
wrong is given at the point in which the overrun happens.

It can be difficult to track the flow of tainted data through a program because doing

1

2

3

THE THREE MAIN CATEGORIES OF DEFECTS

Bugs that violate the fundamental rules of
the runtime, thereby causing the program’s
behavior to be undefined.
These bugs include memory errors, such as null pointer derefer-
ences and buffer overruns; concurrency errors, such as data races;
and many other bugs, such as use of uninitialized memory.

Defects that arise because the program
breaks the rules of using a standard API.
For example, the C library does not specify what happens when
the same file descriptor is closed twice, and since this makes no
sense to do deliberately, it is probably a bug. Leaks of finite re-
sources, i.e. memory or file descriptors, also fall into this category.

Inconsistencies or contradictions in the code.
These may not cause the program to crash, but likely indicate
that the programmer misunderstood an important property of the
code. For example, a condition that is either always true or always
false is unlikely to be intentional because it leads to dead code.

REDUCE AUTOMOTIVE SOFTWARE FAILUIRES WITH STATIC ANALYSIS

6 TECHNICAL WHITEPAPER

so involves tracking the value as it is copied from variable to variable, possibly across
procedure boundaries and through several layers of indirection. Consider, for exam-
ple, a program that reads a string from a risky network port. As strings in C are typical-
ly managed through pointers, the analysis must track both the contents of the string
and the value of all pointers that might refer to the string. The characters themselves
are said to be tainted, whereas the pointer is said to “point to taintedness.” If the
contents of the string are copied, e.g., by using strcpy(), then the taintedness property
will be transferred to the new string. If the pointers are copied, then the points-to-
taint property must be transferred to the new pointer.

Of course, there may be pointers to those pointers, and even pointers to those, and
the analysis must track those too. Ultimately the problem boils down to a kind of alias
analysis, which is an analysis that can tell which variables access the same memory
locations. An explanation of alias analysis is beyond the scope of this paper, but a
good introductory article can be found here: www.wikipedia.org/wiki/Alias_analysis.

UNDERSTANDING TAINT FLOW

Taint can flow through a program in unexpected ways, so an automated tool can also
play an important role by helping programmers understand these channels. In CodeS-
onar, the location of taint sources and sinks can be visualized and program elements

Figure 1. An example buffer overrun warning.

http://en.wikipedia.org/wiki/Alias_analysis

REDUCE AUTOMOTIVE SOFTWARE FAILUIRES WITH STATIC ANALYSIS

7 TECHNICAL WHITEPAPER

involved in flows can be overlaid on top of a regular code view. This can help devel-
opers understand the risk of their code and aid them in deciding how best to change
the code to shut down the vulnerability.

Figure 2 below shows a report of another buffer overrun vulnerability.

In this example, first note the blue underlining on line 80. This indicates that the value
of the variable pointed to by the parameter passed into the procedure is tainted by
the file system. Although this fact may help a user understand the code, the most
interesting parts of this warning are on lines 91 and 92. The underlining on line 91
indicates that the value returned by compute_pkgdatadir() is a pointer to some data
that is tainted by the environment. The call to strcpy() then copies that data into the
local buffer named full_file_name (declared on line 84). This, of course, transfers the
taintedness property into that buffer. Consequently, on line 92, the red underlining
shows that the buffer has become tainted by a value from the environment.

The explanation for the buffer overrun confirms that the value returned by com-
pute_pkgdatadir() is in fact a value retrieved from a call to getenv(). A user inspecting
this code can thus see that there is a risk of a security vulnerability if an attacker can
control the value of the environment variable.

In CodeSonar, an alternative way of viewing the flow of taint through a program is a
top-down view. An example is shown below in Figure 3.

Figure 2. A buffer overrun warning where the underlining shows the effect of taint.

REDUCE AUTOMOTIVE SOFTWARE FAILUIRES WITH STATIC ANALYSIS

8 TECHNICAL WHITEPAPER

GrammaTech, Inc. is a leading developer of software-assurance tools and advanced cyber-

security solutions. GrammaTech helps organizations develop and release high quality software,

free of harmful defects that cause system failures, enable data breaches, and increase corporate

liabilities in today’s connected world. GrammaTech’s CodeSonar is used by embedded developers

worldwide.

CodeSonar is a registered trademark of GrammaTech, Inc.
© GrammaTech, Inc. All rights reserved.

In this example, the user has made use of the red coloration to identify a module
containing taint sources. This is a reasonable approximation of the attack surface of
the program. The code within that module is shown in the pane to the right; the un-
derlining shows the variables that carry taint.

CONCLUSIONS

Software that assumes that its inputs are well-formed and within reasonable ranges
is inherently risky and prone to failure. In the worst case, bad data can lead to serious
security vulnerabilities and crashes.

Taint analysis is a technique that helps programmers understand how risky data can
flow from one part of the program to another. An advanced static-analysis tool can
run a taint analysis and present the results to the user, making the task of understand-
ing a program’s attack surface easier, and easing the work involved in finding and
fixing serious defects.

