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BACKGROUND

Safety-critical software has hit the “affordability” wall due to increasing complexity and growing 
reliance on software to perform mission-critical functions (Redman et. al. 2010). Software devel-
oper productivity on safety-critical systems hasn’t really changed from 5 lines of code (LOC) a day 
and roughly 1000 LOC per year (O. Benediktsson 2000). However, with the growing reliance on 
software, the code size for safety-critical software has skyrocketed. Software affordability is a real 
problem, and static analysis tools are recommended by various standards and experts in the safe-
ty-critical software field as an essential tool for tackling it.

THE SAFETY-CRITICAL SOFTWARE AFFORDABILITY WALL

Software has become the leading cost of safety-critical systems. One third of new airplane costs 
now resides in software and software development. In automobiles, 25% of the capital costs of 
new vehicles are electronics (and software). Software has afforded amazing new capabilities, but 
its exponential growth and associated costs have made it effectively unaffordable:

Clearly the in-step increase in development costs for larger systems has to change, and for this 
various processes and techniques have been proposed. Amongst these is the use of tools – specif-
ically static analysis – to improve test coverage and to detect defects that traditional testing cannot. 
In fact, both SEI and NASA recommend static analysis as an indispensable tool in safety-critical 
software development.

THE EXPONENTIAL COST OF FAILURE

Safety-critical software is expensive to develop and static analysis tools are highly recommended 
by both certification standards and practitioners in the field. Even more expensive is the result 

Source: SEI, “Virtual Integration for Improved System Design”, Redman et. al, 2010

https://wiki.sei.cmu.edu/aadl/images/d/de/SAVI_Virtual_Integration-AVICPS2010.pdf
http://www.eis.mdx.ac.uk/research/SFC/Papers/2WCSQPreprint.pdf
https://resources.sei.cmu.edu/asset_files/WhitePaper/2013_019_001_47803.pdf
http://spinroot.com/gerard/pdf/P10.pdf
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of software failures in manufactured and shipped products, from recalls to litigation to damaged 
reputation. Toyota’s unintended acceleration flaw, for example, in its drive-by-wire throttle system, 
cost the company up to $5 billion dollars in damages and lost revenues – a significant loss and 
important lesson in software safety. Although the Toyota example might seem extreme, a significant 
software failure can have almost unbounded financial impact – studies have shown that defects 
cost 100 times more to fix in production than in early phases of development.

As pointed out by Capers Jones (2009), looking at a cost-per-defect metric alone is misleading 
since it doesn’t factor in the volume of defects and the fact that the cost to find and repair a de-
fect is often the same over time (something developers are quick to point out). For safety-critical 
embedded systems, however, the cost of repair is higher than other industries. If a safety-critical 
defect isn’t fixed on time (or worse, purposely hidden), the financial impact can escalate to legal 
liability and impact future revenue.

Considering the typical software development lifecycle illustrated by the V-model below, we can 
consider the relative benefits of static analysis at each phase of development. The V-model is a 
good example here, being featured in many of the safety-critical software certification standards 
(e.g. IEC 61508 and ISO 26262).

Rather than looking at the traditional cost-per-defect over time or per phase, which Jones (2009) 
argues is true mathematically but doesn’t reflect what is seen in practice, the more revealing data 
is the cost-per-defect per relative volume of defects (as volume of defects decreases over time and 
each phase of development), shown on the next page.

Figure 1: The V-model of system development, often referenced in safety-critical standards, i.e. IEC 61508 and ISO 26262.

http://faculty.washington.edu/rbowen/cases/Toyota_Recall_case_April_2011.pdf
http://www.nist.gov/director/planning/upload/report02-3.pdf
https://www.google.ca/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=0ahUKEwig2rOmwafJAhVKMSYKHf1SADwQFggdMAA&url=http%3A%2F%2Fwww.ifpug.org%2FDocuments%2FJones-CostPerDefectMetricVersion4.pdf&usg=AFQjCNFJGZWahYcaGI3WU2_hlosMwW-Brg
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What is interesting about Figure 2 (note the development phase order), is that the cost-per-defect 
at each phase does go up as expected, but total costs are going down due to the decreased 
volume of defects. In practice, it doesn’t take longer to find and fix bugs at each phase, but the 
costs are still there despite diminished volume. It’s worth noting, also, that as a product matures 
into operation and maintenance (not covered in the chart), cost-per-defect is much higher due to 
the impact of servicing a fielded product. The other intangible costs, such as damage to brand and 
loss of future customers and income, are still factors to consider.

FUNCTIONAL SAFETY STANDARDS

Functional safety is end-to-end in scope, meaning that safety of a component or subsystem is 
evaluated in terms of the entire system (including both software and hardware). This is an import-
ant concept given that software was once considered independent, or insignificant in a system. 
The famous Therac-25 incident proved that idea false in a tragic way. Aerospace led the way with 
standards like DO-178 due to both the complexity of the software and the criticality of the systems 
being developed. Industrial, transportation, rail, and automotive followed over the years, usually as 
derived standards from IEC 61508. 

What has also benefitted from the focus on functional safety is better focus on the impact of soft-
ware control on the entire system and the risk analysis and management that is used at the system 
level. The focus on repeatable, documented processes and rigorous testing has helped software 
safety to improve immensely. The recent Toyota unintended acceleration problem indicates that 
improvements are still needed.

Figure 2: The total cost and cost per defect as the volume of defects diminishes. Source: Capers Jones (2009).

https://en.wikipedia.org/wiki/Therac-25
https://www.google.ca/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=0ahUKEwig2rOmwafJAhVKMSYKHf1SADwQFggdMAA&url=http%3A%2F%2Fwww.ifpug.org%2FDocuments%2FJones-CostPerDefectMetricVersion4.pdf&usg=AFQjCNFJGZWahYcaGI3WU2_hlosMwW-Brg
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CERTIFICATION AND STATIC ANALYSIS TOOLS

Functional safety standards don’t specifically require automated tools, but to efficiently meet certi-
fication requirements, tools offer an excellent return on investment. For example, ISO 26262 (Road 
Vehicles – Functional Safety) specifies software unit design and implementation principles and 
coding guidelines. Static analysis tools are particularly useful in enforcing coding standards such 
as MISRA C.

Help with coding standards is useful but it’s just a small fraction of the capabilities of a product such 
as GrammaTech CodeSonar. Certification standards need robustness, correctness, and consis-
tency, which require design, coding, and testing rigor beyond the coding standards. Static analysis 
tools can find defects in the source code before and after it’s part of the project. The tools can also 
detect bugs that are hard to find in testing and are expensive to debug and fix. In addition, avoiding 
complexity and increasing maintainability is difficult to manage manually, and tools such as Gram-
maTech’s CodeSurfer help immensely in management the structure of the code.

TOOL QUALIFICATION

Software certifications require proof of implementation to the standard, which is often manually 
generated, but automation reduces the workload. Confidence is required in an automated tool’s 
results in order for them to be acceptable certification evidence. To address this, tools vendors 
can seek certifications for the products they sell as well. Recognizing this need, GrammaTech 
CodeSonar is independently certified for ISO 26262, IEC 61508, and EN 50128. This means that 
developers can use the tools with confidence that the results produced are acceptable to approval 
bodies during certification. It’s just too risky to use unqualified tools, which will only result in further 
testing, documentation, and certification costs.

REDUCING COST AND RISK IN SAFETY-CRITICAL SOFTWARE DEVELOPMENT

Static analysis tools provide tangible productivity improvements to software teams seeking strin-
gent software safety certification. Using a qualified tool as part of the software development pro-
cess from early stages of development can have significant benefits:

»  Code coverage isn’t everything: Many safety standards require high levels of code 
coverage (proof that tests executed most, if not all, statements and conditions). Al-

though this is very exhaustive, it’s very expensive to do and must be repeated in each major 
phase of development (unit, integration and system testing). The criticality of the software dic-
tates the level of coverage with some less critical software requiring no formal test coverage 
(e.g. aircraft on-board entertainment). Testing code coverage is one metric by which to evaluate 
software quality, but there are cases where it doesn’t catch everything.

»  Bugs that coverage-based testing miss: Testing software based on coverage met-
rics is inherently unit-based (although coverage is evaluated at a system level as well). 
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Concurrency errors and security vulnerabilities are two key instances of defects that can be 
missed even during rigorous testing.  Concurrency is often tough to program correctly and can 
yield errors (e.g. race conditions) that are undetected until some unforeseen condition during 
operation.  Security vulnerabilities do manifest as bugs in the code -- the conditions creating 
the error are often due to types of input not considered during testing.  Static analysis can dis-
cover these errors early and prevent them from being show-stoppers late in the development 
cycle.

»  Detect defects early: Rigorous testing can discover most defects in software, but it’s 
expensive and extremely time-consuming. Discovering and fixing these bugs when writ-

ing the code is also considerably cheaper than later in the development cycle (defect discovery 
is exponentially more expensive over time). Static analysis can detect bugs in the code as it 
is written -- as part of a developer’s development environment -- greatly reducing the down-
stream cost of defects.

»  Analyzing SOUP: Use of third party code such as commercial off-the-shelf software 
(COTS) and open source software is a fact of life in embedded software development.  

Some safety standards consider any software that isn’t developed to the specific standard 
as software of unknown pedigree (SOUP) -- software that needs to be looked at carefully for 
inclusion in the system.  Static analysis tools can analyze third party source and binaries to dis-
cover defects and security vulnerabilities in software that could be impossible to test otherwise 
(without including it and running it, an expensive option).

»  Accelerate certification evidence: Static analysis (and many other testing and life-
cycle management tools) provide automated documentation to support testing, coding 

standard and quality/robustness evidence. Much of the manpower used in safety certifications 
is documentation and evidence production, automation and specifically static analysis reduces 
this burden significantly. 

THE RETURN ON INVESTMENT FOR STATIC ANALYSIS

So what is the return on investment given 
these factors? Static analysis decreases the 
volume of defects in software under develop-
ment at all stages of development. A simple 
analysis is to reduce the number of defects 
from the data we have from Figure 3. Given 
this reduction in created defects during devel-
opment, we can see a significant reduction in 
cost.

Figure 3: The savings versus total cost of reducing the number of defects entering testing at each phase by 25%.
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This simple analysis yields about $126 savings per defect, which, given an average of 15 defects 
per 1000 line of code (during development when defect volumes are high), gives a savings of 
$1,900 per 1000 LOC. Of course, results will vary, also based on other factors such as labor rates, 
defect detection and repair time, and defect density. However, given that many safety-critical sys-
tems employ 100 KLOC or more, the business case for static analysis is clear. (This analysis also 
doesn’t include post-deployment costs which, as stated before, are much higher.)

STATIC ANALYSIS IS MORE THAN JUST DEFECT REDUCTION

In addition to defect-detection, CodeSonar is used to detect complex concurrency issues, analyze 
third-party source and binaries, and detect errors that traditional testing misses. These critical 
benefits are not factored into the rather simple analysis above, but clearly add to the tool’s ROI. 
However, finding defects that “slip through the cracks” give the greatest economic benefits to the 
development team.

CONCLUSION

Safety-critical software is becoming exceedingly expensive to develop and manufacturers are look-
ing for solutions that increase developer productivity.  Static analysis tools are indispensable for 
safety-critical software development, so much so that experts in the field make them pillars of their 
software development processes.  

Despite rigorous testing, failures still occur in safety-critical software, with catastrophic effects in 
human and economic terms. Static analysis tools are essential for safety-critical software, to en-
sure the development of software that is secure and high-quality. In some cases, safety certification 
standards recommend static analysis tools because of their ability to find defects that testing may 
miss and to enforce coding standards (among other benefits). The return on investment for static 
analysis tools is compelling, underscoring that static analysis plays an important part during devel-
opment but also in system deployment into the marketplace. 

By increasing development and testing productivity and finding bugs that are missed by regular 
testing, static analysis plays a key part in breaking through the safety-critical software affordability 
crisis.
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