
FINDING CONCURRENCY ERRORS WITH GRAMMATECH STATIC ANALYSIS

1 TECHNICAL WHITEPAPER

TRUSTED LEADERS OF SOFTWARE ASSURANCE AND ADVANCED CYBER-SECURITY SOLUTIONS

FINDING CONCURRENCY ERRORS
WITH GRAMMATECH STATIC ANALYSIS

FINDING CONCURRENCY ERRORS WITH GRAMMATECH STATIC ANALYSIS

2 TECHNICAL WHITEPAPER

INTRODUCTION

Although decades of advances in miniaturization have yielded enormous performance gains
for single processors, it now appears that this era is coming to a close. The industry has placed
a big bet on future single-chip performance gains coming from increasing core counts. This
will only be a winning wager if software can be programmed to take advantage of parallel
processors, and unfortunately, concurrent programming is difficult.

Even the experts of single-threaded programming often fail to appreciate that concurrent
programs are susceptible to entirely new classes of defects, such as data races, deadlocks,
and starvation. Avoiding these pitfalls requires deep reasoning about concurrency, which is
difficult for humans, and is not made easier by mainstream programming languages that were
not designed to handle concurrency. Consequently, concurrency errors frequently trip up even
highly experienced programmers. For instance, in one case, a race condition (now fixed) in iOS
4.0-4.1 meant that any person with physical access to an iPhone 3G or later could bypass its
passcode lock under certain conditions.

Concurrent programs and their problems have been with us for much longer than multi-pro-
cessor machines, but concurrency defects of all kinds are much more likely to manifest on
multi-processor (including multi-core) computers. On single-processor systems, threads typi-
cally run uninterrupted for reasonably large time quanta, and there is no truly simultaneous
execution, which dramatically constrains the set of likely behaviors. As a result, when run on
multi-processor systems, concurrent programs that run perfectly well on single-processor sys-
tems often manifest previously-latent defects.

This paper describes some common concurrency pitfalls and explains how static analysis with
CodeSonar® can help find such defects without executing the program. CodeSonar ships with
a range of advanced checks for problems that can arise in concurrent programs. For example,
it includes an innovative Data Race analysis that is paired with user interface functionality for
understanding the interactions between different program threads. In addition to the included
checkers, an extension API is provided, enabling users to add their own checks for software
defects.

Throughout this document, CodeSonar warning class names are rendered in italic, sans-ser-
if font: Null Pointer Dereference. If a warning class is disabled by default, the class name is
marked with an asterisk: Recursive Macro*.

MULTI-THREADING COMPLICATES DEVELOPMENT

When multiple operations can execute concurrently, essentially, everything becomes more
complicated. One of the most significant complications is that instructions in multiple threads
can be interleaved. The number of possible interleavings can be huge, and increases enor-
mously as the number of instructions grows. This phenomenon is known as the combinatorial
explosion. If thread A executes M instructions and thread B executes N instructions, there
are possible interleavings of the two threads. Even the smallest threads have many possible
interleavings – see Figure 1 for some examples. The number of possible interleavings for a pair

FINDING CONCURRENCY ERRORS WITH GRAMMATECH STATIC ANALYSIS

3 TECHNICAL WHITEPAPER

of threads with twelve instructions each exceeds two million. In practice, the actual number
of interleavings is reduced somewhat by constraints on execution order that are imposed by
synchronization operations and the system scheduler; however, even with such constraints,
real concurrent programs have astronomical numbers of legal interleavings.

Real-world software involves many more instructions than these examples, and also tends to
involve branching and other complications. Testing every possible interleaving is infeasible. To
make matters worse, interleaving decisions are made by the system scheduler, with very little
control given to the programmer or end-user. Not only is it infeasible to test every interleaving,
it is very difficult to enforce any specific interleaving on a given execution. System scheduling
is enormously complex, to the point of being effectively nondeterministic. This is especially true
of deployed software that will run in environments outside the control of developers.

As a result, the nondeterminism in multithreaded programs makes traditional software testing
significantly less effective. In principle, a test can be written to reliably expose any defect in a
single-threaded program (although generating a complete set of tests using standard methods
can be incredibly expensive). For multithreaded programs, however, this is not generally the
case because nondeterministic interleaving means that a single test can have many different
behaviors, and it’s difficult or even impossible to force a particular behavior to occur on a given
run of the program.

Nondeterminism also reduces the generalizability of Proven In Use arguments. For single-thread-

Figure 1. There are six possible interleavings of two threads with two instructions each. With three
instructions each, there are twenty possible interleavings.

FINDING CONCURRENCY ERRORS WITH GRAMMATECH STATIC ANALYSIS

4 TECHNICAL WHITEPAPER

ed programs, a long track record of safe operation is a strong indication that the software will
continue operating correctly, even if its environment is changed. For multithreaded programs,
however, even tiny changes in the operating environment can lead to wildly different behavior,
because previously-unexercised interleavings occur. The nearly unbounded number of possible
interleavings means that even aggressive stress testing is not necessarily an effective way to
expose concurrency defects.

CodeSonar, on the other hand, is effective at this difficult task because it can discover software
defects without exhaustively exploring interleavings. It uses sophisticated symbolic execution
techniques to reason about many possible execution paths and interleavings at once. These
techniques find concurrency errors without executing the program at all. Thus, it must play an
important role in multithreaded software verification.

The consequences of interleaving, however, stretch far beyond testing and verification be-
cause the interleaved threads can actually affect each other’s behavior. Ideally, these effects
are intentional and correct, but in practice they sometimes involve race conditions – a class of
problem that does not even exist in a single-threaded environment. The software community
has devoted extensive efforts developing techniques that eliminate these ill effects, including
the more-frequently used locks, semaphores, and message passing.

Unfortunately, these techniques introduce problems of their own. They increase the size and
complexity of the code base, making it harder for human readers to understand. They can
be used incorrectly in ways that lead to processes or even entire programs failing to make
progress. They can cause needless slowdown when used unnecessarily, and fail to provide
protection when accidentally omitted. CodeSonar provides important assistance in identifying
and addressing these kinds of issues.

A single-threaded worldview remains pervasive in software development, even in projects that
have made the transition to multithreading. In some cases, developers do not think about mul-
tithreading at all. Other developers may be aware of multithreading and its attendant hazards,
but treat artifacts like semaphores, thread-safe libraries, and the volatile keyword as magical
talismans for warding off concurrency bugs. Even experts usually do not have a sufficiently
holistic understanding of the system to reliably spot concurrency defects.

Many development practices implicitly consider threads individually and so do not account
for all the issues that can arise when several threads execute simultaneously. Unit testing, for
example, will not uncover all bugs caused by the interaction of multiple threads. Similarly,
running multithreaded programs in a debugger is not an effective way to diagnose concurren-
cy problems, because the debugger itself disrupts the operating environment, and only one
interleaving can be explored per execution. Such practices remain appropriate and valuable
for addressing “classical” software defects, but must be augmented with techniques that take
into account the true multithreaded nature of the system.

Development tools are also sometimes fundamentally based on a single-threaded worldview.
For example, compiler optimizations are often based on the assumption that if the current
thread does not modify a value, the value remains unmodified. But if more than one thread is

FINDING CONCURRENCY ERRORS WITH GRAMMATECH STATIC ANALYSIS

5 TECHNICAL WHITEPAPER

running at once, this is not necessarily true. The definitions of C and C++ did not include any
reference to multithreading until the 2011 revisions of their respective standards. Compiler
and runtime support for these standards is still incomplete, which means that multithreaded
programs are exposed to implementation-specific behavior to a much greater extent than sin-
gle-threaded programs. As Boehm [2] puts it, “essentially any application must rely on imple-
mentation-defined behavior for its correctness.” Eliminating all potential concurrency defects
like data races and deadlocks is a good way to avoid bad implementation-specific behaviors.

In the remainder of this paper, we describe software defect classes that are specific to mul-
tithreaded programs, and demonstrate how CodeSonar can be used to find these defects,
reducing the probability of their occurrence.

DATA RACE

A data race arises when multiple threads of execution access a shared piece of data, and at
least one of them changes the value of that data, without an explicit synchronization opera-
tion to separate the accesses. Depending on the interleaving of the two threads, the system
can be left in an inconsistent state. Data races are especially insidious because they can lurk
undetected indefinitely and only show up in rare circumstances with mysterious symptoms
that are difficult to diagnose and reproduce.

As a result, data races are a common source of errors in (well-tested) deployed software. At
best, the presence of data races means increased development times; at worst, the conse-
quences can be devastating. A data race in a computerized Energy Management System dra-
matically worsened the 2003 Northeast blackout by causing delayed and misleading informa-
tion to be communicated to the operators [4]. In an article titled Tracking the blackout bug [3],
Kevin Poulsen notes that “[t]he bug had a window of opportunity measured in milliseconds.”
The chances of a problem like this manifesting during testing are infinitesimal.

A simple data race example is shown in Figure 2. A manufacturing assembly line has entry and
exit sensors, and maintains a running count of the items currently on the line. The entry sensor
controller increments the count every time an item enters the line, and the exit sensor control-
ler decrements it every time an item reaches the end of the line. If an item enters the line at the
same time that another item exits, the count should be incremented and then decremented (or
vice-versa) for a net change of zero.

However, computers implement increment and decrement as a sequence of simpler operations
that first load the value from memory, then modify it locally, and finally store it back to mem-
ory. If the updating transactions are processed in a multithreaded system without sufficient
safeguards, a data race can arise because the controllers read and write a shared piece of
data: the count. The interleaving in Figure 2 results in an incorrect count of 69. There are also
interleavings that result in an incorrect count of 71, as well as a number that correctly result
in a count of 70.

FINDING CONCURRENCY ERRORS WITH GRAMMATECH STATIC ANALYSIS

6 TECHNICAL WHITEPAPER

Data races like this are difficult to eliminate for several reasons:

Rare occurrence means little chance of even noticing that there is a problem. If the
problem manifests infrequently, it may never show up during testing. As noted above, the
number of possible interleavings of two processes is enormous and interleaving decisions are
not under user control. Testing every interleaving is simply impossible, and even if testers
identify a small number of interleavings that merit inspection they will generally not have the
means to enforce test executions with those interleavings.

Data race diagnosis is difficult. Firstly, the symptoms can be perplexing. In the Figure 2 ex-
ample, the running count will (probably) usually be correct, but sometimes too high and other
times too low. Secondly, programmers unaccustomed to considering the particular pitfalls of
multithreaded programming may spend a lot of time puzzling over the code before the pos-
sibility of a data race occurs to them. The effects of data races often seem impossible when
the symptomatic code is considered in isolation; this sometimes leads developers to discard
data-race-related bug reports as unreproducible. CodeSonar’s static analysis is especially help-
ful in this regard. It identifies data races by examining patterns of access to shared memory
locations – that is, it focuses on the causes, not the symptoms. When a data race is identified,
CodeSonar issues a Data Race warning that includes supporting information to aid the user
in evaluation and debugging. The need for a developer to work backwards from a particular
symptom is eliminated, which reduces the overall debugging burden.

We note here that CodeSonar also provides a File System Race Condition check. This is a differ-
ent form of data race vulnerability in which a program calls a function that checks a named file
and then later calls a function that uses the same named file. The source code assumes the file
is the same at both times, when in fact another process may have changed the file between
the ‘check’ and ‘use’. For example, an attacker could replace the original file with a link to a
file containing confidential data.

Eliminating data races can introduce new problems. Data races are typically avoided by
using locks or other synchronization techniques to protect shared resources. However these
can introduce performance bottlenecks that might prevent the program from taking advan-
tage of the full potential of multiple cores, so programmers must exercise care in using them.
In the worst case, they can lead to a different set of problems, namely deadlock and starvation.

Figure 2. Data race leads to incorrect count of items on an assembly line.

FINDING CONCURRENCY ERRORS WITH GRAMMATECH STATIC ANALYSIS

7 TECHNICAL WHITEPAPER

DEADLOCK

In a deadlock, two or more threads prevent each other from making progress by each holding
a lock needed by another. Figure 3 shows how a deadlock can arise with two locks used to
protect two shared variables. In this example there are multiple assembly lines that share a
count of the total number of items currently under assembly and a second bad_items value
recording how many finished items have failed quality control. One thread acquires the lock on
count, another acquires the lock on bad_items. Neither thread can now obtain the second lock
it needs, so neither can carry out its operations, and so neither will get to the point where it
will release its lock. Neither update can be completed, and both threads are completely stuck.

CodeSonar can help identify software at risk of deadlock by issuing Conflicting Lock Order
warnings if the same locks can be acquired in different orders by different threads: the ex-
ample in Figure 3 has this property. Eliminating all such cases is sufficient to ensure that the
system cannot become deadlocked.

The Nested Locks check is even more aggressive: a warning is triggered whenever a thread
tries to obtain two or more locks. If each thread can only hold one lock at a time then dead-
locks cannot arise. However, completely eliminating all lock nesting is an ideal that many real
projects cannot attain: some users will disable this check and enable only Conflicting Lock
Order.

Even though either of these restrictions on locks is sufficient to eliminate deadlock, process
starvation can still occur.

PROCESS STARVATION

A thread starves if it is waiting for a lock that is held by another thread for a very long time.
The most common instances of this problem involve the lock-holding thread waiting for an
event like a large disk read or the arrival of data from the network. Suppose our example man-
ufacturing automation system includes a regular audit thread that examines all entry and exit
records to ensure that the running count matches total items entering less total items exiting.

Figure 3. Deadlock between two threads: neither can progress.

FINDING CONCURRENCY ERRORS WITH GRAMMATECH STATIC ANALYSIS

8 TECHNICAL WHITEPAPER

The audit thread needs to hold locks on the count and on all sensors, so all updates must wait
for the audit to finish. If the audit runs for a long time, updates can be significantly delayed.
If it runs for too long, the next audit may manage to acquire all the locks and start running
before the outstanding thread can make any progress. In the worst case, some or all of the
updates may never have the opportunity to run.

Static analysis can help find starvation problems by examining the set of all procedures called
by a thread that holds some lock. CodeSonar users can add custom checks of this form. For
example, if there is a function f() that can block or is known to have a long running time, en-
gineers can add a custom check that triggers a warning whenever f() is called by a thread that
holds one or more locks.

CORRECT USE OF SYNCHRONIZATION TECHNIQUES

It can be tricky to write code that uses synchronization techniques effectively, and coding stan-
dards often impose restrictions on which techniques can be used and under which conditions.
For example, the JPL Institutional Coding Standard for the C Programming Language [1] does
not permit task delay functions to be used for task synchronization. CodeSonar includes a
suite of checks for the JPL coding standard, including a Task Delay Function check that issues
warnings at any use of a function that has been identified as having this purpose. A config-
uration parameter allows users to extend the list of known task delay functions as required.
More generally, users can use the BADFUNC_* family of configuration parameters to extend
the CodeSonar analysis by specifying forbidden synchronization functions whose use should
trigger a warning. (The BADFUNC_* parameters are also useful for identifying functions – es-
pecially those in third-party code – that are or may be thread-unsafe. CodeSonar’s built in Use
of ttyname* check has this motivation.)

CodeSonar is also ideally suited to identifying potentially risky patterns of synchronization
function usage.

- Unknown Lock: a lock or unlock operation refers to a lock that cannot be identified.

- Missing Lock, Missing Unlock, Lock/Unlock Mismatch: an unlock (lock) operation in
the body of some function does not have a corresponding lock (unlock) operation in
the same function. This does not necessarily mean that the matching operation is not
carried out, but keeping the lock and unlock operations in the same function ensures
that the program is more human-readable, and thus easier to maintain.

- Double Lock, Double Unlock: the same resource is locked (unlocked) multiple times,
which can have adverse effects on the resource or the locking infrastructure. Even if
these effects are not experienced for a particular implementation, the doubled opera-
tion may indicate the existence of a previously-unconsidered execution path.

- Try-lock that will never succeed: indicates a redundant and possibly misleading try-lock
operation.

FINDING CONCURRENCY ERRORS WITH GRAMMATECH STATIC ANALYSIS

9 TECHNICAL WHITEPAPER

Users can add their own checks for risky usage patterns with the CodeSonar Extension API.
Such checks could be based on local coding rules, or on the particular synchronization tech-
niques used in a given project.

CONCLUSION

Multithreading adds entirely new classes of potential bugs to those that must be considered
by developers. At the same time, the nondeterminism and sheer number of possibilities intro-
duced by thread interleaving make it significantly more difficult to find bugs in multithreaded
systems by testing and other traditional methods.

The static analysis provided by GrammaTech CodeSonar supports development teams in ad-
dressing both of these issues. It provides checking and reporting for a range of concurren-
cy-related problems without the limitations experienced by execution-based techniques or the
oversimplification imposed by a single-threaded point of view.

To learn more about CodeSonar, and for a free trial, contact GrammaTech.

REFERENCES:

1. JPL Institutional Coding Standard for the C Programming Language, 2009, Jet Propulsion Labora-
tory, California Institute of Technology JPL DOCID D-60411.

2. Boehm, H.-J., Threads Cannot be Implemented as a Library. In ACM SIGPLAN Conference on Pro-
gramming Language Design and Implementation (PLDI). 2005. Chicago, IL: ACM. pp. 261-268.

3. Kevin Poulsen, Tracking the blackout bug. in SecurityFocus. April 7, 2004.

4. U.S.-Canada Power System Outage Task Force, Final Report on the August 14, 2003 Blackout in

the United States and Canada: Causes and Recommendations. 2004.

GrammaTech, Inc. is a leading developer of software-assurance tools and advanced cyber-

security solutions. GrammaTech helps organizations develop and release high quality software,

free of harmful defects that cause system failures, enable data breaches, and increase corporate

liabilities in today’s connected world. GrammaTech’s CodeSonar is used by embedded developers

worldwide.

CodeSonar is a registered trademark of GrammaTech, Inc.
© GrammaTech, Inc. All rights reserved.

