
The document was prepared using best effort. The authors make no warranty of any kind and shall not be liable in
any event for incidental or consequential damages in connection with the application of the document.

© All rights reserved.

Using GrammaTech CodeSentry and CodeSonar to

improve Software Security and comply with IEC 62443

 Customer:
GrammaTech
Bethesda, MD

USA

Contract No.: Q21/02-139
Version V1, Revision R2, May 4th, 2021

Bill Thomson

© exida CodeSentry_Whitepaper_V1R2.docx
 exida 80 N. Main St, Sellersville, PA 18960 Page 2 of 19

Table of Contents
1 Purpose and Scope ... 3

2 Abbreviations .. 3

3 Software Vulnerabilities: Introduction... 3

4 Addressing Software Vulnerabilities and Meeting IEC 62443-4-1 SA requirements with
CodeSonar .. 5

4.1 CodeSonar Workflow For Internally Developed Software ... 5

5 TPS Introduction: TPS is not our software but it is in our offering .. 8
5.1 What is TPS?.. 8
5.2 Why is TPS used? .. 8
5.3 TPS-specific security risks and challenges ... 8

6 Managing TPS Security – TPS Selection .. 9
6.1 Selecting TPS ... 9
6.2 TPS Selection Basic Workflow .. 9
6.3 TPS Selection: Power Tools To The Rescue ..10

6.3.1 Power Tools To The Rescue Part 1: CodeSentry ...11
6.3.2 Power Tools To The Rescue Part 2: CodeSonar For Binaries14

7 Managing TPS Security – Addressing CVEs ... 15
7.1 TPS CVE Management Basic Workflow ..15
7.2 TPS CVE Management: Power Tools To The Rescue ...16

8 Compliance with safety standards ... 17

9 Conclusions ... 18

10 Reference Documents ... 18

11 Status of the Document ... 19
11.1 Liability ..19
11.2 Version History ..19
11.3 Future Enhancements ...19
11.4 Release Signatures ...19

http://www.exida.com/

© exida CodeSentry_Whitepaper_V1R2.docx
 exida 80 N. Main St, Sellersville, PA 18960 Page 3 of 19

1 Purpose and Scope
In order to develop secure code free of vulnerabilities, suppliers are increasingly following a
secure development lifecycle to achieve these goals. The IEC 62443-4-1 standard (Security
for industrial automation and control systems –Part 4-1: Secure product development
lifecycle requirements) defines specific requirements for using a secure development
lifecycle in the design, implementation, maintenance and testing of products used in
industrial automation and control systems. Grammatech’s CodeSentry and CodeSonar
tools can be used to help suppliers comply with this standard.

Two major contributors to security vulnerabilities found in products today are implementation
weaknesses in programs created in languages such as C and C++ and the use of Third
Party Software (TPS). The CodeSentry and CodeSonar tools can address both of these
issues.

This document introduces common causes of security vulnerabilities including
implementation programming weaknesses in programing languages and TPS. In addition
it describes TPS types, describes TPS specific security challenges and provides guidance
on how to use the Grammatech CodeSentry and CodeSonar tools in a workflow to select
and manage TPS and overall product security.

2 Abbreviations
BOM Bill Of Materials – list of software components and this versions in a software library or

software image
CVE Common Vulnerabilities and Exposures - publicly known information-security

vulnerabilities and exposures
OSS Open Source Software – software where source code is available free of charge subject

to licensing agreements
TPS Third Party Software – software developed by someone outside of a product vendor’s

organization

3 Software Vulnerabilities: Introduction
As mentioned in the introduction, software implemented in widely used programming languages
such as C, C++ and Java has common implementation (programming) weaknesses which can
lead to potential security vulnerabilities with examples including but not limited to:

• Buffer overflows
• Using banned functions with known vulnerabilities
• Memory leaks
• Deadlock
• Unhandled exceptions

Awareness of these vulnerabilities and the importance of mitigating them was the driver behind
including requirements for this in the IEC 62443-4-1 standard. Specifically, IEC 62443-4-1
requires performing SA (Static Analysis), identifying potential vulnerabilities along with their
severity and addressing vulnerabilities based on the risk level.

The CodeSonar tool was designed and implemented with these requirements in mind and can
help with the process of identifying security issues along with their severity in internally

http://www.exida.com/

© exida CodeSentry_Whitepaper_V1R2.docx
 exida 80 N. Main St, Sellersville, PA 18960 Page 4 of 19

developed code or TPS distributed as binaries. Examples of the types of security issues
CodeSonar can uncover include but are not limited to:

• Unitialized variables
• Use of banned (unsafe) functions
• Buffer over- and underruns
• Cast and conversion problems
• Command injection
• Copy-paste error
• Concurrency
• Ignored return value
• Memory leak
• Tainted data
• Null pointer dereference

http://www.exida.com/

© exida CodeSentry_Whitepaper_V1R2.docx
 exida 80 N. Main St, Sellersville, PA 18960 Page 5 of 19

4 Addressing Software Vulnerabilities and Meeting IEC 62443-4-1 SA
requirements with CodeSonar

With the increasing prevalence of Agile, DevOps and CI/CD development methodologies
meeting the 4-1 requirements for running SA requires use of a tool well suited for this workflow
and which supports widely used programming languages such as C, C++ and Java.

4.1 CodeSonar Workflow For Internally Developed Software
CodeSonar makes the workflow for identifying and addressing security issues in C, C++ and
Java source code simple enough to be shown in a 1-page flow chart:

Since “Address Warnings” requires evaluating the security risk of issues, CodeSonar’s
classification and colloquial description of the issue help quicky determine which issues have
high enough risk to warrant fixing. For issues which do require fixing CodeSonar’s path and
call tree visualizations help reduce the effort of implementing a fix.

http://www.exida.com/

© exida CodeSentry_Whitepaper_V1R2.docx
 exida 80 N. Main St, Sellersville, PA 18960 Page 6 of 19

http://www.exida.com/

© exida CodeSentry_Whitepaper_V1R2.docx
 exida 80 N. Main St, Sellersville, PA 18960 Page 7 of 19

CodeSonar provides the ability to integrate with commonly used tools in modern development
methodologies such as DevOps, DevSecOps, CI/CD and Agile.

Some of the supported tools include:

This integration helps facilitate IEC 62443-4-1 compliance and streamline the overall
development process.

http://www.exida.com/

© exida CodeSentry_Whitepaper_V1R2.docx
 exida 80 N. Main St, Sellersville, PA 18960 Page 8 of 19

5 TPS Introduction: TPS is not our software but it is in our
offering

5.1 What is TPS?
TPS (Third Party Software) is software created and maintained by a third party. TPS
comes in two forms:
OSS (Open Source Software)

• Community developed and available to use free of charge subject to licensing
restrictions.

• Full access to source code
• Common examples include: Linux distributions, OpenSSL, mbedTLS, netSNMP

Commercial Software

COTS (Commercial Off The Shelf) Software
• Commercially developed software
• Examples include entire operating systems such as Microsoft Windows, protocol

stacks such as Pyramid Solutions EtherNet/IP and CIP protocol
Custom Commercial Software

• Software developed under contract specifically for use in a vendors product.
• Examples include outsourced software development and development of a

custom protocol stack by a protocol stack vendor

5.2 Why is TPS used?
TPS is increasingly common in a wide variety of products because it has advantages
including but not limited to:

• Peer reviewed and “battle hardened” implementations for complex security-related
functionality such as SSL/TLS are widely available.

• Since OSS is “free” it doesn’t require capital expenditures to use provided the
licensing agreements are complied with.

• TPS can incorporate capabilities a company doesn’t have the skillset to develop
internally. For example, developing a protocol stack.

• Frees up engineering resources to develop software aligned with a company’s core
competencies.

5.3 TPS-specific security risks and challenges
Suppliers are responsible for the security of their offering irrespective of who provides the
components used to implement it. For example, if Anisha purchases an automobile and the
remote unlocking feature has a security issue, she fully expects the automobile
manufacturer to resolve the issue without her needing to learn who provided the locking
subsystem for the automobile. Customers and security standards alike require vendors
bear full responsibility for the security of any offering carrying their brand.

http://www.exida.com/

© exida CodeSentry_Whitepaper_V1R2.docx
 exida 80 N. Main St, Sellersville, PA 18960 Page 9 of 19

TPS (Third Party Software) and TPS security issues are increasingly prevalent in the
industry. In addition, TPS security issues pose some unique challenges that make TPS
selection as well as timely identification and resolution of security issues critical. This has
led to customers, governments and cybersecurity standards all mandating that suppliers
manage security for the TPS in their offering.

TPS in general and OSS in particular introduces some unique security risks and challenges:

1. Attackers have full access to the source code for OSS which increases their chances
of finding vulnerabilities.

2. Since TPS is so widely used, if attackers find a vulnerability in a TPS component
(CVEs - Common Vulnerabilities and Exposures) it will affect multiple vendor’s
offerings. This increases attacker motivation. For example, when the Heartbleed
vulnerability was discovered in OpenSSL it affected products ranging from financial
web sites to security cameras to network equipment because OpenSSL is incredibly
prevalent. As a result, Heartbleed made the mainstream news and there was a
harried effort to get patched versions of OpenSSL deployed into a multitude of
vendor’s offerings before attackers could exploit it.

3. OSS licensing agreements often require disclosing the OSS BOM (bill of materials)
used in a vendor’s offering.

4. For TPS in general but OSS in particular, attackers learn about TPS
vulnerabilities at the same time or before vendors using TPS in their offering
and the vendor’s customers.

5. Vendors using TPS in their offering are generally dependent upon the provider of the
TPS to address security issues.

Of the items above, 4 is perhaps the most problematic and unique to TPS. It is also one of the
main drivers for the content of this paper and the reason security standards such as IEC 62443-
4-1 contain requirements for managing TPS security.

6 Managing TPS Security – TPS Selection

6.1 Selecting TPS
Customers hold vendors accountable for the security of the vendor’s product regardless of
who implemented the software components contained within it. In addition, security
standards such as IEC 62443-4-1 (see SM-9: Security requirements for externally
provided components) require the security of TPS components within a product is
evaluated and managed. The implications of the two previous statements are TPS
selection needs to be approached carefully.

6.2 TPS Selection Basic Workflow
Selecting a TPS component follows the basic workflow outlined below.

1. Determine whether to use OSS or commercial software
OSS Pros

• No capital expenditures required
• Some OSS is widely used and battle hardened

OSS Cons

http://www.exida.com/

© exida CodeSentry_Whitepaper_V1R2.docx
 exida 80 N. Main St, Sellersville, PA 18960 Page 10 of 19

• Operating expense required to keep up with CVEs
• If OSS community abandons support for component, vendor needs to

pickup support or switch components

Commercial Software Pros

• Vendor is responsible for operating expense of managing CVEs
• Some vendors follow a robust secure development lifecycle

Commercial Software Cons
• Vendor may fall behind in managing CVEs
• Capital expense of acquiring the software and paying for support

2. Identify BOM and CVEs in candidate TPS:
• Compare CVEs in candidate TPS libraries and use that as one of the TPS

selection criteria.
• Include the quantity of CVEs, severity of CVEs and age of unresolved

CVEs in the evaluation
3. For candidate TPS libraries distributed as binaries, identify the type of security

vulnerabilities static analysis tools would find in source code.

6.3 TPS Selection: Power Tools To The Rescue
As one might imagine, manually establishing an accurate BOM (bill of materials) and set of
applicable CVEs is impractical for all but trivial TPS components. This is especially true for
cases where a TPS component might be an entire application. For example, an IACS
(Industrial Automation and Control Systems) system integrator intending to comply with the
IEC 62443-3-3 standard must identify and manage the CVEs in all the components in the
system. In the IACS system context, component encompass everything from embedded
devices to Windows applications to Browsers.

In addition, many commercial TPS software components are distributed as binary libraries
so running static analysis on source code isn’t feasible. But, as previously stated both the
IEC 62443-4-1 standard and customers require you address security vulnerabilities in your
product regardless of where the components come from.

The GrammaTech CodeSentry and CodeSonar Binary tools will allow a product or system
vendor to scan a binary software component or application:

• compile a BOM
• identify the CVEs for the components in the BOM.
• Identify potential vulnerabilities related to known weaknesses in programming

languages such as C, C++ and Java

http://www.exida.com/

© exida CodeSentry_Whitepaper_V1R2.docx
 exida 80 N. Main St, Sellersville, PA 18960 Page 11 of 19

6.3.1 Power Tools To The Rescue Part 1: CodeSentry
Below is a CodeSentry Workflow diagram for compiling a BOM and CVE list for two
candidate TPS components.

In this example CodeSentry shows Candidate TPS component 2 has far fewer
vulnerabilities so is likely a better choice than TPS component 1. Drilling down to the next
level of detail, on the Vulnerabilities tab one can sort vulnerabilities by severity or age:

http://www.exida.com/

© exida CodeSentry_Whitepaper_V1R2.docx
 exida 80 N. Main St, Sellersville, PA 18960 Page 12 of 19

The above example is sorted by Severity and shows 1 critical and 8 high severity CVEs in
the gostscript subcomponent. It would likely be a bad idea to select this TPS library
because all of those high and critical severity CVEs would become part of your product and
your customers and IEC 62443-4-1 would hold you accountable for addressing them.

http://www.exida.com/

© exida CodeSentry_Whitepaper_V1R2.docx
 exida 80 N. Main St, Sellersville, PA 18960 Page 13 of 19

The above example sorted by CVE ID shows 2 High severity CVEs from 2016 (CVE-2016-
xxxx). The component vendor is not keeping up with CVEs in their application. This
indicates a lack of process rigor by the TPS provider in managing the CVEs in the
subcomponents of their software.

http://www.exida.com/

© exida CodeSentry_Whitepaper_V1R2.docx
 exida 80 N. Main St, Sellersville, PA 18960 Page 14 of 19

6.3.2 Power Tools To The Rescue Part 2: CodeSonar For Binaries
Below is a CodeSonar Workflow diagram for assessing known weaknesses in two
candidate TPS binary libraries:

CodeSonar shows Candidate TPS component 2 has far fewer security warnings than
component 1. This analysis is valuable for complying with the IEC 62443-4-1 requirement
to evaluate the security of TPS components used in a product. It also provides evidence to
help motivate the supplier of the chosen TPS library to address the security issues.

http://www.exida.com/

© exida CodeSentry_Whitepaper_V1R2.docx
 exida 80 N. Main St, Sellersville, PA 18960 Page 15 of 19

7 Managing TPS Security – Addressing CVEs

7.1 TPS CVE Management Basic Workflow
The prevalence of TPS (OSS in particular) security issues has led customers, governments
and cybersecurity standards all mandating vendors manage security for the TPS in their
offerings. For example, the IEC 62443-4-1 cybersecurity standard requires vendors employ
a process for identifying security issues in TPS and managing them. At a conceptual level,
the workflow for managing TPS security issues is very straight forward:

1. Construct a BOM (bill of materials) consisting of all the TPS components (names
and versions) used in the offering.

2. Identify potential CVEs (Common Vulnerabilities and Exposures – publicly known
security issues) in each component in the BOM.

3. Investigate each CVE and for any which are legitimate:
a. Contact the COTS vendor or OSS provider to see if a fix is available.
b. Once a fix is available, incorporate the patched or new TPS component

version in your offering.

There are several challenges with the above workflow:
1. Manually constructing an accurate BOM can be very problematic.
2. Since attackers and security researchers are constantly uncovering new CVEs in

TPS, customers and standards alike require vendors continuously check for CVEs
in the TPS in their offerings. This combined with 2 above makes manually tracking
TPS CVEs impractical.

http://www.exida.com/

© exida CodeSentry_Whitepaper_V1R2.docx
 exida 80 N. Main St, Sellersville, PA 18960 Page 16 of 19

7.2 TPS CVE Management: Power Tools To The Rescue

The CodeSentry tool greatly improves the efficiency of the CVE management work flow
and facilitates the ongoing effort of managing TPS security required by customers and
security standards alike. On the next page is a sample CodeSentry-based workflow. This
workflow is scalable to large numbers of TPS components and CVEs. Since the list of
CVEs is constantly changing customers and security standards alike require regularly
checking for new CVEs even when the TPS component versions are static.

http://www.exida.com/

© exida CodeSentry_Whitepaper_V1R2.docx
 exida 80 N. Main St, Sellersville, PA 18960 Page 17 of 19

Notes on the above work flow

1. In some cases, CVEs for a component won’t apply to the application they are used
in because the affected functionality isn’t used by the application. For example, the
widely used OSS component OpenSSL provides many functions in addition to its
core SSL/TLS functionality. If an application is using only one of these functions
and not SSL/TLS it won’t be affected by vulnerabilities in SSL/TLS. It is not feasible
for an automated tool to detect this so this analysis must be performed manually.

2. When applicable critical CVEs are discovered by CodeSentry, it is critical to put in
place a plan to release a patched software image as soon as a fix for the TPS is
available because, as previously stated, attackers will immediately be aware of the
vulnerability. The other implication of this is images should be scanned frequently
for new vulnerabilities to help close the gap between when a TPS vulnerability is
published and users of the TPS become aware of it.

8 Compliance with safety standards

IEC 62443 does not have any specific requirements for the security tools that are used for
security verification and validation testing. However, the functional safety standards, IEC 61508
and ISO 26262 do have such requirements for tools used in product development and testing.
The Grammatech CodeSonar tool has been certified with the tool requirements in these
standards. These standards recognize that failures in these tools could lead to faults in the
product that could lead to safety related failures. The same can be said from a security point of
view that failures in these tools could lead to faults in the product that could lead to security
related failures. In order to address these types of failures, the functional safety standards
include an assessment of development tools in three different areas: the development process
that is used to develop the tool, the validation testing that is done to ensure that the tool meets
its specification, and field usage experience and history in the tool. These standards require
that a rigorous development and validation process be used to create and test the tool, and
compliance with these standards indicates that a tool follows such processes in their
development and therefore is less likely to include faults that lead to safety and security related
failures.

http://www.exida.com/

© exida CodeSentry_Whitepaper_V1R2.docx
 exida 80 N. Main St, Sellersville, PA 18960 Page 18 of 19

9 Conclusions

1. IEC 62443-4-1 and customers alike require identifying and addressing known
classes of vulnerabilities in programming languages with the use of static source
code analysis tools. The CodeSonar tool is well suited for meeting this requirement
in today’s common development methodologies and programming languages.

2. TPS offers many advantages but also some unique security considerations and
challenges.

3. Customers and security standards alike are driving managing security in TPS (Third
Party Software).

4. The CodeSentry and CodeSonar Binary tools can provide valuable input for
selecting a TPS component or library.

5. Attackers and security researchers are constantly finding new CVEs in TPS. As a
result, using a tool such as CodeSentry to facilitate frequent scanning for new CVEs
becomes necessary to help keep up.

10 Reference Documents
The services delivered by exida were performed based on the following standards:

N1 IEC 62443-4-1 Secure product development lifecycle requirements

http://www.exida.com/

