
ELIMINATING VULNERABILITIES IN THIRD-PARTY CODE WITH BINARY ANALYSIS

1 TECHNICAL WHITEPAPER

TRUSTED LEADERS OF SOFTWARE ASSURANCE AND ADVANCED CYBER-SECURITY SOLUTIONS

WWW.GRAMMATECH.COM

ELIMINATING VULNERABILITIES IN THIRD-PARTY
CODE WITH BINARY ANALYSIS

ELIMINATING VULNERABILITIES IN THIRD-PARTY CODE WITH BINARY ANALYSIS

2 TECHNICAL WHITEPAPER

BACKGROUND

Over the last few years, third-party code has moved from a minor factor in software develop-
ment to a dominant force in the industry. It is now used throughout software development in
all applications, from highly sensitive government and military applications to security-inten-
sive consumer commerce and communications.

According to the latest report from VDC Research, the majority of software that runs on
embedded devices is now developed by external sources, not in-house development teams.
Some of this is open-source, but in embedded applications, nearly 30% of code is third-party
commercial software – so the source is often unavailable. Such components include graphics
and windowing toolkits, cryptography libraries, middleware, databases, and others.

As a result of this outsourcing, the behaviors of significant parts of applications are actually
hidden from most of today’s popular code analysis tools. Because third-party software is com-
monly delivered only in executable form, it cannot be examined with commercially available
static source code analysis tools. Without access to the source code, these tools cannot fully
account for the security consequences of executing the third-party code in the application.

Based on over 10 years of research, through collaboration with the University of Wisconsin
and with support from the United States Navy, Air Force Research Labs (AFRL), and Defense
Advanced Research Projects Agency (DARPA), GrammaTech has developed an advanced new
capability that uses binary analysis to examine third-party code without requiring access to
source code.

GrammaTech has integrated this binary analysis capability into their proven static analysis tool,
CodeSonar, to create the first commercially-available binary analysis product. CodeSonar’s
binary analysis technology provides developers with the ability to evaluate, test, and inspect
third-party code, all while reaping the benefits of advanced workflow options and manage-
ment tools.

Common Third-Party Code Components
The use of third-party code has grown in popularity as more developers have started to
build applications with a component-based architecture.

Some of the most common uses of third-party code include the following:

Communications — Enabling an application to communicate via the Internet or
wirelessly with other applications.

Databases — Third-party software is used extensively to manage, optimize,
monitor, and backup databases.

Standard Libraries — These typically include definitions for commonly used
algorithms, data structures, and mechanisms for input and output. Developers
have become so accustomed to some of them that they forget the libraries are
not part of the language itself.

ELIMINATING VULNERABILITIES IN THIRD-PARTY CODE WITH BINARY ANALYSIS

3 TECHNICAL WHITEPAPER

THE DANGERS OF THIRD-PARTY CODE

Development teams commonly turn to third-party software to incorporate particular function-
ality, such as communications or graphics, into their applications.

Cost, lack of local expertise, and unwillingness to “reinvent the wheel” are among the many
sound reasons that organizations use third-party software, whether as components in their
own products or as tools to support organizational activities. By outsourcing this development
task, teams can focus more on the core functional capabilities of their software and dramati-
cally accelerate time-to-market for their products.

Unfortunately, developers and the organizations they work for often fail to consider the fol-
lowing: When an organization releases software that includes third-party code, it becomes
responsible for every line of code inside the application – including all of the third-party code.

An attacked organization can suffer significant losses. Producers who ship vulnerable code
that is subsequently attacked can expect to lose reputation along with time and money. And
even if vulnerabilities are not used as a basis for attack, they can cause difficulties when the
software is used normally, which can entail costly remediation.

Changes in development practices, ever-widening supply chains, and the rapid growth of
code bases means it is now, more than ever, a dangerous assumption to hope that third-party
code vendors have maintained and documented best-practice security checkpoints during the
development process. It is increasingly clear that trust in a producer is by no means sufficient
to guarantee an acceptable level of risk.

Malicious entities can distribute counterfeit products, for example, to exploit the reputations of
trusted producers. And genuine products themselves are not guaranteed to be risk-free: they
can be tampered with in transit or sabotaged by malicious insiders within a trusted organiza-
tion. Even if a genuine product is created by entirely trustworthy staff and delivered through a
secure channel, vulnerabilities may still flow through from further up the supply chain.

It is worth noting, also, that exploitable software vulnerabilities are not always caused by ma-
licious interference. Errors that introduce zero-day exploitable buffer overruns, for instance,
can arise from outdated design documents, misunderstandings about arcane language details,
even typographical errors.

So what can development teams do to ensure greater safety in products that use third-party
code?

BINARY ANALYSIS: AN INNOVATION TO ENSURE THIRD-PARTY CODE SAFETY

Instead of attempting to formulate and enforce security requirements over the entire upstream
portion of the supply chain, organizations can now employ a more practical approach. By le-
veraging binary analysis, organizations can focus on establishing trust in incoming software at
the point of use, and in outgoing software at the point of dispatch.

ELIMINATING VULNERABILITIES IN THIRD-PARTY CODE WITH BINARY ANALYSIS

4 TECHNICAL WHITEPAPER

This approach also permits organizations to consider a
much broader range of software: products from new
companies without established reputations, software
obtained over unsecured networks, and even compo-
nents whose provenance is completely unknown.

When you are able to analyze binaries, you can scan
software components, such as libraries or full appli-
cations, without requiring their source code. CodeS-
onar can even analyze executables that have been
“stripped” of symbol table and debugging informa-
tion.

Binary executables can either include the symbol-ta-
ble/debugging information (“unstripped”) or not
(“stripped”). Software producers may strip their bina-
ries for a range of reasons, from benign (saving space),
to proprietary (protecting trade secrets against reverse
engineering), to hostile (obfuscating the code to hide
a virus).

In order to find bugs, security vulnerabilities, or malicious code (backdoors, time bombs, or
logic bombs) in an application delivered as stripped machine code, developers must be able to
analyze stripped executables.

Static analysis of stripped executables is beyond the capabilities of most static analysis prod-
ucts. CodeSonar, on the other hand, can perform static analysis on both stripped and un-
stripped executables.

Through this evolution in static code analysis, developers can inspect and evaluate all external-
ly-produced code used in their applications. Binary analysis results can also be used to compare
and contrast the relative safety of different third-party components, so teams can make the
best possible decision when choosing components to include in their applications.

Figure 1. Here, CodeSonar has detected a null pointer dereference in an analyzed
binary. Some associated build information was available, so CodeSonar was also
able to determine the source location at which the dereference occurs.

Figure 2. This is the CodeSonar warning report for the source manifestation of the bug from Figure 1. CodeSonar
can handle projects where both machine and source code are available for some component, but only source
code is available for other components.

ELIMINATING VULNERABILITIES IN THIRD-PARTY CODE WITH BINARY ANALYSIS

5 TECHNICAL WHITEPAPER

INTEGRATED ANALYSES

Often, the software resources available for analysis include a combination of machine code
and source code. For software developed entirely in-house, full source code is usually available
for analysis alongside the finished program binaries.

When third-party components are being evaluated, on the other hand, they are often only
available in binary form, but source is typically available for large parts of the system into which
they will be integrated. In this way, organizations attempting to integrate systems will gener-
ally be working with both machine code and source code at any given time.

CodeSonar can analyze such code, using the additional information provided, to strengthen
the analysis and improve the quality of feedback wherever possible.

An additional advantage of analyzing binary code is that it represents exactly the software that
will be executed by the hardware. Source code, by contrast, does not provide the whole story:
the influence of the compiler must also be taken into account. Source code language defini-
tions are full of ambiguities and inconsistencies. In such cases, the compiler is free to resolve
these as it generates the machine code. Compiler optimizers frequently take advantage of
these ambiguities. Thus, the semantics of the source code may even be different depending on
the level of optimization used. Additionally, the compiler itself may contain flaws and generate
incorrect code.

The example above shows a compiler-introduced error found during a 2002 security review
at Microsoft. The compiler concluded that the memory was never accessed post-memset(),
and so the memset() call could be removed, meaning that the cleartext password remained
on the stack.

When analyzing binary executables, on the other hand, all of these compiler effects have al-
ready manifested, so the analysis has much higher fidelity.

Analyzing binaries with automated static analysis – in which run-time properties of programs
are computed without actually executing the programs – has some important advantages over
other methods for security assessment.

Unlike manual inspection, it scales readily to the size and complexity of modern software.
Unlike testing, which can only ever cover a tiny portion of the possible execution cases, static
analysis approaches coverage of all possible executions. Unlike dynamic analysis, which exam-
ines software as it runs, static analysis does not involve executing software. Inspection, testing,
and dynamic analysis can be helpful adjuncts to static analysis, but they cannot replace it.

The following diagram demonstrates how binary analysis expands the code analysis footprint
of an application.

{
 char password[MAXLEN];
 ...
 memset(password,’\0’,len);
}

ELIMINATING VULNERABILITIES IN THIRD-PARTY CODE WITH BINARY ANALYSIS

6 TECHNICAL WHITEPAPER

BEST PRACTICES FOR SECURING THIRD-PARTY CODE

Used early in the development lifecycle, an automated binary analysis tool will help develop-
ment teams select the safest components to include in their completed applications. Addition-
ally, when using third-party code to build an application, development teams should follow
other third-party code best practices, as described below.

Legal requirements: When contracting with a third-party software vendor, specify in the
contract itself the security limitations your development team is willing to accept, as well as
what constitutes a transference of liability to the third-party vendor.

Reporting transparency: Require that third-party vendors, in lieu of sharing their source
code, share reports from their own use of automated software analysis tools and manual
testing evaluations.

ELIMINATING VULNERABILITIES IN THIRD-PARTY CODE WITH BINARY ANALYSIS

7 TECHNICAL WHITEPAPER

Coding standards: Discuss compliance of coding standards with third-party software vendors
to understand what inconsistencies in their code may generate potential exploits, and to gain
better knowledge of your vendor’s coding process.

Communication: After analyzing your final application with binary analysis, work with your
third-party vendors to improve the overall security of their code, and, by extension, your ap-
plication as well.

CONCLUSION

Due to the continual proliferation of malicious attackers and the growing sophistication of
cyber-warfare between nations, exploiting vulnerabilities in third-party code is an expanding
frontier. Software developers must actively defend their applications against this threat to
avoid application failure.

Leveraging binary analysis to test and inspect the executables of third-party code will help de-
velopers build safer applications and instill greater confidence in the companies or government
agencies that rely on the security of their software.

CodeSonar’s binary analysis capability empowers developers with a new depth of understand-
ing about how secure applications truly are. Although acceptance testing of third-party com-
ponents such as libraries remains important, developers are now able to build even safer
applications by analyzing these components in the context in which they are being used.

Further, extending security efforts into third-party code has important business benefits. It
can accelerate development cycles, improve the security of software, and ultimately increase
customer satisfaction.

Adding binary analysis to the development process allows developers to test a more holistic
representation of their final application, which helps organizations deliver more trusted ap-
plications to customers and eliminate potential liabilities due to vulnerable third-party code.

GrammaTech’s Binary Analysis Research

GrammaTech began researching and developing machine-code analysis and vulnerability detection tools in 2001.

GrammaTech’s world-class binary research team is led by Dr. Alexey Loginov, Associate Vice President of Binary Analysis
Technologies. The team’s extensive experience includes over 60 person-years of research on machine-code analysis, and
these scientists are responsible for many firsts in the field of machine-code analysis:

- The first model checkers for machine code and self-modifying code.

- The first property checker applied to a stripped device driver to check that it conforms to an API-usage rule.

- The first tool for understanding flow of values through an executable’s variables & dynamically allocated memory objects.

ELIMINATING VULNERABILITIES IN THIRD-PARTY CODE WITH BINARY ANALYSIS

8 TECHNICAL WHITEPAPER

References:

The Global Market for Automated Test and Verification Tools, VDC Research, 2013

WYSINWYX: What You See Is Not What You eXecute, IFIP Working Conference on Verified
Software: Theories, Tools, Experiments (VSTTE), Balakrishnan, G., Reps, T., Melski, D., and
Teitelbaum, T., 2005. Zurich, Switzerland: Springer.

Investigative Report on the U.S. National Security Issues Posed by Chinese Telecommunications
Companies Huawei and ZTE, House Permanent Select Committee on Intelligence 112th
Congress 2nd Sess., . 2012, USGPO.

GrammaTech, Inc. is a leading developer of software-assurance tools and advanced cyber-

security solutions. GrammaTech helps organizations develop and release high quality software,

free of harmful defects that cause system failures, enable data breaches, and increase corporate

liabilities in today’s connected world. GrammaTech’s CodeSonar is used by embedded developers

worldwide.

CodeSonar is a registered trademark of GrammaTech, Inc.
© GrammaTech, Inc. All rights reserved.

