GRAMMATECH

EASING THE ADOPTION OF STATIC ANALYSIS
INTO EXISTING PROJECTS

</CODE>

TRUSTED LEADERS OF SOFTWARE ASSURANCE AND ADVANCED CYBER-SECURITY SOLUTIONS
WWW.GRAMMATECH.COM

EASING THE ADOPTION OF STATIC ANALYSIS INTO EXISTING PROJECTS IN YOUR COMPANY WITH STATIC ANALYSIS

INTRODUCTION

The adoption of any new tool into an existing Software Development Process with an established
code base is always a challenge. Static analysis tools are no different but there are steps to take
to make the transition easier and smooth the introduction of these tools into an existing workflow.
In addition, the techniques outlined here are useful on an ongoing basis to introduce new static
analysis features and get the most return on investment from static analysis.

This paper doesn’t cover the initial setup and installation of GrammaTech CodeSonar, those steps
are covered well in customized setup guides based on operating system and intended use. The
assumed initial point is after the first complete analysis, when the first time static analysis results
are available for a project. Note, it’s critical to address parse errors encountered during the initial
analysis before proceeding further with the results. Not resolving these errors leads to gaps in the
analysis and more false positives and possibly missed problems (false negatives) as well. After
dealing with as many parse errors as possible, the question now is how to use this data to have
a big impact on the quality and security of the software and where to focus development efforts.

As is common with the initial use of a static analysis tool, there are many items to sort through and
this may seem overwhelming are first. This paper is aimed at reducing the initial shock and help the
development team to improve quality and security efficiently.

FIRST COMPLETE ANALYSIS

An initial analysis with the default settings may look like something like Figure 1. This example is
open source database project postgres which has approximately 1 million lines of code. Over 3700
warnings are generated. In the case of the postgres example, a significant portion of these reports
are Null Pointer Deference followed by Redundant Condition, Uninitialized Variable, Ignored Return
Value and so on.

postgres : postgres analysis 1 : Warnings per Class

Options: Fle Edt Vien

1000
Number of Warnings

Figure 1: Example output from the postgres project as a histogram ranked by number of warnings
in each class

2 TECHNICAL WHITEPAPER @

EASING THE ADOPTION OF STATIC ANALYSIS INTO EXISTING PROJECTS IN YOUR COMPANY WITH STATIC ANALYSIS

A more common view is the main warnings report as shown in figure 2. Of note in the initial
warning report is the score column. The score is an important metric that is a combination of
several factors: The first is the likelihood that the warning represents a true positive (the error in the
warning is correct.) The second is the severity of the warning, in particular if it's security-related.
The third factor is the complexity of the warning, with more-complex warnings generally receiving
lower score values than less-complex warnings. The warning score is an important metric to help
prioritize work in CodeSonar.

GCODESONAR Search for Search B | Advanced Search

Home » posigres » postgres analysis 1 CSV | XML | Visible Warnings: [active "~ "

postgres : postgres analysis 1 <previous next= Alerts: [o0 o Functions.
[Finished

Analysis Details | Charts and Tables | Reports | Metrics | Gompare | Visualization

le< < 1-176 0f 3757 > ==l

W”m"m‘ Goto Show More Show Fewer
Scorev Da Class a i Filea Line Number a _Procedure Priority State Finding Owner

79 452312153 Leak Reliablity pg_backup_archiverc 1275 SetOutput None None None

79 484512492 Leak Reliabiity pg_backup. tar.c 422 tarOpen None None None

78 3887.11448 Leak Reliablity pg_resetxlog.c 418 ReadControlFile None None None

78 518612853 Leak Reliabiity describe.c 2520 listDbRoleSettings None None None

77 447012088 Leak Reliabiity ~ execute.c 857 ecpy_store_input None None None

77 515112816 Leak Reliablity ecpg.c 139 main None None None

77 4647.12278 Leak Reliabiity type.c 341 ECPGdump_a_type None None None

77 4648.12279 Leak Reliabiity type.c 349 ECPGdump_a_type None None None

77 405211620 Leak Reliabiity ~ variable.c 577 adjust_array None None None

77 465112283 Leak Reliablity type.c 311 ECPGdump_a_type None None None

77 585213049 Leak Reliabiity ~ connect.c 302 ECPGeonnect None None None

76 453812168 Leak Reliabiity ~ variable.c 449 dump_variables None None None

76 465212284 Leak Reliablity type.c 351 ECPGdump_a_type None None None

76 anam<iaga 1aab Dotibitn, oo 20n e N Namn Mann

Figure 2: An example of the main warning report page

Another view is to sort the warnings by file which helps highlight potential problem areas in the
code, as illustrated in figure 3 (this view is zoomed in to the first 20 files). In this case, there are over
1000 warnings in the first ten files listed.

postgres : postgres analysis 1 : Warnings per File

Options: File Edit View

po_dump.c
readfuncs.c
oge
elog.c
print.c

pg_backup_archiver.c

ruleutis.c

o 100 200 300 00

Number of Warnings

Figure 3: A histogram showing a ranking of warnings per file.

3 TECHNICAL WHITEPAPER @

4 TECHNICAL WHITEPAPER

EASING THE ADOPTION OF STATIC ANALYSIS INTO EXISTING PROJECTS IN YOUR COMPANY WITH STATIC ANALYSIS

It's possible to use filters to further specialize the view of the warnings depending on the job at
hand. Learning to deal with the volume of reports during the early adoption phase helps stop the
tools from overwhelming the development team.

SEARCHING

CodeSonar offers a flexible search mechanism (with the ability to save searches) that helps narrow
down a large list of warnings to a much more manageable amount based on state, warning score,
error class, significance and many other factors. Filtering can of course be done on the attributes
that have been assessed, or on some of the other attributes associated with a warning:

e Significance refers to the high-level purpose of a class of warnings. In CodeSonar the significant
classes are grouped as security, reliability, redundancy, style and diagnostic. Filtering warnings
that focuses on reliability and security might be most important to review, in the short term, for
a project adopting static analysis for the first time.

e Warning class is a specific indication of what a warning is checking for. For example, the
LANG.MEM.NPD, Null Pointer Deference class warns of an attempt to deference a pointer at
null address. Some warning classes might be more important to review that others. In above
postgres example, Null Pointer Deference warnings make up 47% of all warnings.

e Warning score indicates both the severity of an error and the likelihood of the analysis being
correct. A high score indicates a possible serious error with a high confidence in being a true
positive result (correct) versus a false positive (warning that turns out to be incorrect.) A filter
could choose to ignore low scoring warnings in order to focus on high impact, high confidence
warnings.

e Specific files might be a cause for concern. Bugs and security vulnerabilities are likely to reside
in large complex files and a significant number of reports in one file should be investigated. In
the postgres example, the file pg_dump.c contained a large number of warnings.

ASSESSMENTS

It is important to realize that any assessment done on warnings is persistent from analysis run
to analysis run. If something is marked as false or a real defect, there is no need to redo these
assessments in the future and this work is not lost. This is a tremendous productivity booster
compared to more compiler-like warnings that many people may be familiar with. There are multiple
different attributes that are stored with a warning and that are part of the assessment that a software
engineer can do:

e The State of a warning indicates its place in the assessment process. After the first analysis,
all warnings are in state “None.” Over time, as warnings are reviewed they are placed in
different states based on the outcome of the analysis and remediation. For example, a warning

8

5 TECHNICAL WHITEPAPER

EASING THE ADOPTION OF STATIC ANALYSIS INTO EXISTING PROJECTS IN YOUR COMPANY WITH STATIC ANALYSIS

that turns out to be a real error can be assigned to a developer to be fixed and marked as
“assigned.” A warning that isn’t important right now can be marked as “Later.” Filters can be
setup to look at only new warnings or to view only those that haven't already been analyzed.

e The Priority of a warning is typically used by the engineer to indicate the urgency of a warning,
or to suppress it in most searches.

EASING STATIC ANALYSIS ADOPTION

As with the postgres example, the number of warnings can be a deterrent to getting the most out
of static analysis early in the project when it benefits the most. There are three key approaches to
facilitate adoption:

e Filter and Focus: Filtering the viewed data from CodeSonar’s web interface, focussing on what
is most important for the project and assigning developers to fix critical issues in priority order.

e Mark and Defer: Lower the priority, or change the state to “later”, for example, on all or a
subset of the warnings based on some set of conditions that are less crucial to the project.

e Stop the Bleeding: Using the above techniques, to temporarely defer existing warnings with
the emphasis on fixing new defects that are introduced as code is changed or new code is
developed.

THE FILTER AND FOCUS APPROACH

The filter and focus approach attempts to address high priority warnings as part of the current
workflow rather than at a later date. The team (or team leader) creates and saves searches on the
dataset based on some property, for example, a directory, filename, or warning class. Developers
are then directed to these searches to analyze them and assess the warnings and perform any
fixes that are required. This is the quickest way to reduce the backlog of security and quality issues
and establish a good understating of the quality and security status of the software.

EASING THE ADOPTION OF STATIC ANALYSIS INTO EXISTING PROJECTS IN YOUR COMPANY WITH STATIC ANALYSIS

EXAMPLES

Using the postgres example, the list of warnings with a score greater than 50 in the reliability and
security classes, is much smaller and manageable (a list of 640 warnings versus 3757):

Home » posigres » posigres analysis 1 » Warning Search Results CSV | XML | Visible Warnings: | warninigs Score over 50 +|

Save this search.
l<< < 1- 50 of 640 > ==l

Goto Show More Show Fewer
Scorev IDa Projecta Class Significance File Line Number Procedure Priority State Finding a Owner
79 452312153 postgres Leak Reliability pg_backup_archiverc 1275 SetOutput None None. None
79 484512492 posigres Leak Reliability pg_backup_tar.c 422 tarOpen None None: None
78 38B7.11448 posigres Leak Reliability pg_resetxlog.c 418 ReadControlFile None None None
78 5186.12853 postgres Leak Reliability describe.c 2520 listDbRoleSettings None None None
77 447012088 posigres Leak Reliability execute.c 857 ecpg_store_input None None: None
77 515112816 posigres Leak Reliability ecpg.c 138 main None None None
77 4647.12278 postgres Leak Reliability type.c 341 ECPGdump_a_type None None None
77 4648.12279 posigres Leak Reliability type.c 349 ECPGdump_a_type None None None
77 405211620 posigres Leak Reliability variable.c 577 adjust_array None None None
77 465112283 postgres Leak Reliability type.c 311 ECPGdump_a_type None None None
77 535213049 postgres Leak Reliability connect.c 302 ECPGconnect None None None
76 453812168 postgres Leak Reliability variable.c 448 dump_variables None None: None
76 465212284 postgres Leak Reliability type.c 351 ECPGdump_a_type None None None
76 4266.11866 postgres Leak Reliability regexec.c 392 cfind None None None
76 423911836 posigres Leak Reliability regexec.c 311 find None None None
76 513012795 postgres Leak Reliability pg_dump.c 4668 getindexes None None None
76 4560.12190 posigres Leak Reliability desariptor.c 191 output_get_descr None None None
76 465012282 posigres Leak Reliability type.c 324 ECPGdump_a_type None None None
76 467312306 postgres Leak Reliability pg_dump.c 3260 getConversions None None None
76 4697.12331 posigres Leak Reliability pg_dump.c 6519 getForeignDataWrappers None None None

Figure 4: An example output from the postgres project filtered by a score of 50 or above

Consider another view, in this case, the list of buffer overrun and underrun warnings classes in the
postgres example (a list of 157 warnings):
Home > posigres > postgres analysis 1 CSV | XL | Visible Warnings: | overruns and underruns_~

postgres : postgres analysis 1 < previous next> Alerts: [0o Undefined Functions
‘ Finished

Analysis Details | Chans and Tables | Repors | Metrics | Compare | Visualization

le< < 1-500f167 > 3l
m‘m’m‘ Goto Show More Show Fewer
Scorev IDa Class Significance File Line Number Procedure Priority State Finding Owner

67 5227.12894 Buffer Qverrun Security pg_backup._directory.c 409 _LoadBlobs None None None

65 433611945 BufferOverun Security pgc.c 5022 parse_include Nane Nane None

60 506412726 BufferOverun Securi pg_backup_tar.c 634 _PrintFileData None None None

59 524212913 BufferOverun Security pg_backup_tar.c 738 _LoadBlobs Nane None None

56 4078.11650 Buffer Ovemun Security numeric.c 1501 PGTYPESnumeric_from_double None None Nane

58 4524.12154 Buffer Gverrun Sacurity pg_backup._archiver.c 1273 SetOutput None None None

58 484612493 BufferOvemun Security pg_backup_tar.c 421 tarOpen None None Nane

58 4281.11884 Buffer Qverrun Security elog.c 1870 setup_formatted_log_time None None None

54 361911170 BufferOverun Security readfuncs.c 1420 readDatum Nane Nane None

54 638214127 BufferOvermun Security relcache.c 3079 load_relcache_init_file None None None

54 4031.11599 Type Overrun Security findtimezone.c 248 score_timezone None None None

53 439412000 BufferOvermun Security selfuncs.c 3051 convert string_datum None None Nane

53 5396.13097 Buffer Gverrun Security tsquery.c 365 makepol None None None

52 6517.14276 BufferOverun Security misc. a7 pg_tablespace_lacation Nane Nane None

51 669014462 Buffer Overun Security basebackup.c 685 sendDir None None None

49 394211505 BufferOverun Security datetime.c 439 AppendSecands Nane None None

49 394311506 BufferOverun Security datetime.c 447 AppendSeconds None None Nane

49 6990.14790 Buffer Overrun Security formatting.c 4922 numeric_to_char None None None

49 698714787 BufferOverun Security formatting.c 5125 int8_to_char None None Nane

Figure 5: An example output from the postgres project filtered by buffer overrun and underrun
errors only.

6 TECHNICAL WHITEPAPER

7 TECHNICAL WHITEPAPER

EASING THE ADOPTION OF STATIC ANALYSIS INTO EXISTING PROJECTS IN YOUR COMPANY WITH STATIC ANALYSIS

Yet another example: Further investigation reveals that warnings with a score of over 50 in the
reliability and security classes, are very prevalent in the file xlog.c (containing 58 warnings.)

Home » postgres » postgres analysis1 » Warning Search Results CSV | XML | Visible Warrings: | Warninigs Score over 50~

Save this search.

Other Domains: Search files for "path=", i 9.2.0 1sam/xlog.c™

more suggestions
le< < 1-50 of 58 > >>|

Goto Show More Show Fewer
Scorev Da Projecta Class i File Line Number _Procedure Priority _ State Findinga Owner
63 6368.14113 posigres Uninitialized Variable Security xog.c 5803 recoveryStopsHere None None None
63 3939.11502 posigres Uninitialized Variable Security xog.c 3469 UpdateLastRemovedPir None None None
63 8940.11503 postgres Uninitialized Variable Security xog.c 3473 UpdateLastRemovedPtr None None None
63 3941.1150¢ posigres Uninitialized Variable Security xog.c 3470 UpdateLastRemovedPir None None None
83 711214914 posigres Uninitialized Variable Security xog.c 6320 StartupXLOG None None None
63 711414916 posigres Uninitialized Variable Security xog.c 6323 StarupXLOG None None None
63 711114913 posigres Uninitialized Variable Security xog.c 6316 StartupXLOG None None None
62 6881.14671 postgres Uninitialized Variable Security xog.c 9640 do_pg_stop_backup None None None
81 6977.14777 posigres Uninitialized Variable Security xog.c 3941 ReadRecord None None None
61 6367.14112 postgres Unterminated G String Security xog.c 5803 recoveryStopsHere None None None
61 354211089 posigres File System Race Condition Security xog.c 10587 CheckPromoteSignal None None None
61 6483.14240 posigres No Space For Null Terminator Security xog.c 8508 XLogRestorePoint None None None
61 6453.14209 postgres File System Race Condition Security xiog.c 10080 GancelBackup None None None
81 4111.11693 posigres File System Race Condiion Security xog.c 2719 InstallXLogFileSegment None None None
61 6369.14114 postgres No Space For Null Terminator Security xog.c 5765 recoveryStopsHere None None None
61 6693.14465 postgres File System Race Condition Security xog.c 5704 exitArchiveRecovery None None None
61 637114116 posigres No Space For Null Terminator Security xog.c 5860 recoveryStopsHere None None None
60 4109.11691 postgres File System Race Condition Security xog.c 2740 InstallXLogFileSegment None None None
80 6354.14008 posigres File System Race Condition Security xog.c 3094 RestoreArchivedFile None None None

Figure 6: An example output from the postgres project for warnings with a score of 50 or above in
the file xlog.c

It’'s easy to see that an originally large list can be narrowed down to help focus software teams on
the most important warnings with the highest confidence and the most problematic areas of the
code.

A NOTE ON CONFIGURATION

Tool configuration is another option for specifying how a tool like CodeSonar behaves, including
which warning classes are on by default. The default set by GrammaTech is a recommended
baseline of important warnings that span the various class groups. However, this may not be ideal
for every project and for a large code base, the default configuration can result in a large number
of warnings.

CodeSonar’s default configuration shows off its superior depth in analysis. This can be customized
by applying ‘presets’, collections of settings that GrammaTech has provided to further customize
the depth. Of particular interest are the following presets:

e Intro; this is a preset used when first introducing static analysis to a project, it focusses on the
most dangerous classes with the highest precision.

e Default; this preset provides good coverage for critical defects in each of the significant classes,
a good second step when moving beyond the “Intro” preset.

e Thorough; this preset increases the compute time allowed for the analysis engine and hence
finds deeper, more complex warnings. However, the analysis run does take longer due to the
extra computation time allotted.

8

8 TECHNICAL WHITEPAPER

EASING THE ADOPTION OF STATIC ANALYSIS INTO EXISTING PROJECTS IN YOUR COMPANY WITH STATIC ANALYSIS

Of course, these presets can be customized further, for example to configure only the warning
classes that are the most important for each software team. This is a good idea if certain warning
classes are important to a project, for example, to make sure source code complies with MISRA
C. There might be error classes that aren’t considered important and can be permanently removed
from the analysis by configuration. However, the downside to this approach is that once disabled,
the warning no longer appears in the analysis from that point forward. Warnings can be disabled
individually for example, to disable the Unused Value warning, the configuration file needs the
following:

WARNING FILTER += discard class="Unused Value”

Unused Value is part of a category called LANG.STRUCT. To disable all related warnings to this
category, the configuration following can be added to the configuration:

WARNING FILTER += discard categories:LANG.STRUCT

THE MARK AND DEFER APPROACH

Instead of creating searches, the team (or team leader) searches for defects that are low priority
and uses the change-multiple-warnings feature to ‘suppress’ warnings. This hides them from the
view of the software developers. The development team can then have a discussion later whether
they want to go back and review these warnings.

EXAMPLES

Another approach which is a variation on filtering, indeed, filtering is still needed to avoid seeing
all warnings in the CodeSonar hub. Unlike the filter view approach described above the “ignore
everything” approach uses the warning state (e.g. “New”, “Assigned”, “Fixed”) Setting all of the
warnings from the first static analysis run to “Later” removes all of the warnings from the normal
active view (they can always be retrieved, when viewing all warnings.) Subsequent analyses (e.g.
after every nightly build) that introduce new warnings will be clearly visible and in a much more
manageable amount. Developers can commit to investigating and fixing just new bugs for now and
go back to the list marked as later as time allows. Let’s consider another project, in this case, the
UnreallRCd open source chat server. The initial analysis finds 1182 warnings and by selecting all of
these and setting the state to later, we remove them from the current active list.

EASING THE ADOPTION OF STATIC ANALYSIS INTO EXISTING PROJECTS IN YOUR COMPANY WITH STATIC ANALYSIS

61 10522912 NoSpace ForNullTerminator Securty ~ extbansc 310 extban_moder_conv_param None None None

61 10512911 NoSpace ForNullTerminator Secuty extoansc 160 extban_modec_conv_param Nome Nene None

61 10742930 NoSpace ForNullTerminator Securty m_tklc 1634 parse_tkl_para None None None

61 11343011 NoSpace ForNullTerminator Secury ~ extbansc 281 extban_conv_param_nuh None None None

61 1345.3146 Use of SO_REUSEADDR Security s_bsd.c 1019 set_sock_opts None None None

61 1388.3069 No Space For Null Terminator ~ Security m_protoctlc 113 m_protoct! None None None

61 13043230 NoSpace ForNullTerminator Secury s conf.c 2792 AlowClient Nome None None

61 13953241 NoSpace ForNullTerminator Secury s conf.c 2790 AlowClient Nome Nene None
Annotations: Expart le< < 1- 50 of 1182 > >l
1182 checked Goto Show More Show Fewer

GheokThese 50 | | Uncheck These 50
Check All Uncheck All
Priorty:
State: + no change
Aasigned

Finding: Fixed

Owner: prers

Note: o

Save changes

Figure 7: A screenshot from CodeSonar showing how to multiple select warnings and set their
state from with the web interface.

The current active list for the initial analysis is now empty. After running the analysis on a later build
we only see the introduction of new warnings:

‘UnreaIIRCd : UnreallRCd analysis 2 <previous next> Alerts:
Finished

Analysis Details | Charts and Tables | Reports | Metrics | Compare | Visualization

le< < 1-Bof6 > >3l

Warnings ” Files H Procedures Goto Show More Show Fewer
Scorev IDa Class ‘Significance File Line Number Procedure Priority State v Finding Owner

48 1379.7518 Null Pointer Dereference Reliability s_bsd.c 915 close_connection None None None

47 2576.7550 Coercion Alters Value Security m_server.c an m_server None None None

34 2573.7444 Buffer Overrun Security s_conf.c 179 config_parse None None None

34 2574.7445 Buffer Overrun Security s_conf.c 182 config_parse None None None

34 2575.7446 Buffer Overrun Security s_conf.c 174 config_parse None None None

25 1890.8077 Format String Security m_nick.c 298 m_nick None None None

Annotations: Export le< < 1-60f6 = >>1

Goto Show More Show Fewer

Figure 8: The output from the UnreallRCd project after filtering all of the warnings from the first
build.

After filtering the initial batch of warnings there is now a more reasonable set of warnings to
investigate. However, there may be lingering bugs and security vulnerabilities in the initial group
that need attention. In order to fully realize the benefits of static analysis some plan must be made
to deal with these remaining bugs. The accumulation of bugs and security vulnerabilities over time
is known as technical debt and eventually it can impede time and money needed for innovation.

9 TECHNICAL WHITEPAPER @

10 TECHNICAL WHITEPAPER

EASING THE ADOPTION OF STATIC ANALYSIS INTO EXISTING PROJECTS IN YOUR COMPANY WITH STATIC ANALYSIS

STOP THE BLEEDING

In order to start improving the quality of a project, it's important though to make sure that no
new defects are being added as code is changed or new code is added. This is easily done in
CodeSonar by creating a comparison between the latest build and the initial build to look for new
warnings that were introduced due to new code, or changes to old code.

Many customers use a mix of all three options, Filter and Focus on the high priority warnings for
example of category ‘Security’, or warnings in specific components that are business critical and
then use “Mark and Defer” for less critical warnings (for example, ‘Dead code’ warnings) and ‘Stop
the Bleeding’ to prevent new issues from being introduced.

EXAMPLES

Another approach to determine the list of newly introduced warnings between different builds
in CodeSonar is to use the compare function. For example, the list below shows the difference
between the first build of the UnreallRCd project versus the second. This list just shows the newly
introduced warnings in the latest version of the software. When trying to “stop the bleeding” it's
important to at least address critical warnings introduced at each new build. The compare function

makes it easy to determine where to focus efforts after each build.
Home » Warning Search Results CSV | XML | Visible Wamings: | active ~

Save this search.

< < 1-190019 >
Goto Show More Show Fewer

Score Line UnreallRCd UnreallACA
S b, Projecta Class Significance File K por Procedure Priority State Findinga Owner UreainCd inrealic
64 19883277 UnreallRC \imiaized Securty s_bsd.c 1752 read_message None None None v
64 19893278 UnreallRC \irianzed Secuity sbsdc 1761 readmessage None None None .
64 13633201 UnreallRCd riiarzed Securty timesynchc 214 unreal time_synch None None None v
63 19643200 UnrealRCd \yintalzed Securty timesynchc 220 unreal_time_synch None None None v
61 13453146 UnreallRCd lsjéi;'EuSEADDR Securty s_bsd.c 1019 setsockopts None None None v
52 12643125 UnreallRCd BufferOverun Secury m_watchc 262 m_watch None None None .
Null Test After))
51 19843266 UnreallRCd Mol TS AT polapiity monicke 739 m_nick None None None .
Null Test After ;
51 14133264 UneallRCA Nt Te AT Rolapiity monicko 785 m_nick None None None .
48 13513190 UnreallRCd onborter Reliabilty m_tkl.c 2256 _mtki None None None v
34 19503152 UnreallRCd BufferOverun Secury s._confc 1119 config parse None None None .
25 20013610 UnreallRCd FormatString Securty ~ m_mode.c 825 do_mode_char None None None .
25 20023632 UnreallRCd FormatString Secury m_chgidentc 176 m_chgident None None None .
I 20 19422894 UnreallRCd froagneet Redundancy m_tkl.c 2373 _place_host ban None None None .
48 13797518 UnreallRcd NUl Pointer Reliabilty ~s_bsdc 915 close_comection None Assigned Unconfirmed csuser v
Dereference ! = g
47 25767550 UnreallRCd GoeoO" AT!S Securty m_severc 311 m_server None Assigned Unconfirmed csuser v
34 25737444 UnreallRCd BufferOverun Secury s.conc 1179 config_parse None Assigned Unconfimed csuser .
34 25747445 UnreallRCd BufferOverun Secury s.confc 1182 config_parse None Assigned Unconfimed csuser .
34 25757446 UnreallRCd BufferOverun Secury s.confc 1174 config parse None Assigned Unconfimed csuser .
25 18908077 UnreallRCd FormatSting Secuity minicke 208 m_nick None Assigned Unconfirmed csuser .
Annottons: Expor < < 1-190f18 > >
Goto| | Show More Show Fewer

Figure 9: A comparison of second build of the UnreallRCd project versus the first. This shows just
the new warnings introduced in the second build.
INTERPRETING RESULTS, FALSE POSITIVES AND NEGATIVES

Static analysis tools are essentially detectors of defects, so some of the vocabulary from information
retrieval is appropriate here.

e Recallis a measure of the ability of a tool to find real defects. It is defined as the ratio of defects
that the tool finds over all defects. A tool with 100% recall can find all defects and is said to
be sound.

8

IR

TECHNICAL WHITEPAPER

EASING THE ADOPTION OF STATIC ANALYSIS INTO EXISTING PROJECTS IN YOUR COMPANY WITH STATIC ANALYSIS

e Precision is a measure of a tool’s ability to exclude false positives, defined as the ratio of true
defects reported in the total number of warnings.

Precision is easy to measure once warning reports have been triaged but it is very difficult to measure
recall accurately because the number of false negatives (defects that were not found) is unknown.
Measuring it requires knowing exactly how many defects there really are in the code under analysis.
It is important to point out that precision and recall can vary enormously among defect classes, even
for a single tool. A tool that is very good at finding buffer overruns may not necessarily be very good
at finding resource leaks.

FALSE POSITIVES AND NEGATIVES ARE INEVITABLE

For the majority of users, the real measure of the usefulness of a static analysis tool is whether it
can find a reasonable number of important bugs in their programs without overwhelming them with
useless reports, all without using an unreasonable amount of computing resources. The rub is that
the very same properties that make these tools practical to use also mean that they are vulnerable
to false positives and false negatives.

Static analysis tools work by creating a model of the code to be analyzed, and then querying that model
in various ways. The model usually consists of a set of intermediate representations such as symbol
tables, abstract syntax trees, control flow graphs, the program call graph, and so forth. The querying
mechanisms can range from simple searches of those data structures through very sophisticated
algorithms based on advanced concepts such as dataflow analysis, symbolic execution, abstract
interpretation or model checking. Models are fallible and since the analysis depends on the fidelity of
the model, the analysis is susceptible to misinterpretation and false or missed reports.

Unfortunately, the analysis algorithms are not perfect, they need to make their approximations such
that they will scale to large programs. The market demands tools that complete in a small multiple
of the time to do a regular build. Unfortunately, many of the algorithms are fundamentally super
linear if they are to be precise. For example, consider an analysis that is path sensitive: capable of
computing information about individual paths through the program. The number of paths through
a single procedure with no calls or loops is exponential in the number of conditionals. One often
quoted statement is that the number of paths through software of reasonable size, such as the Linux
kernel, is larger than the estimated number of atoms in the known universe. Clearly no algorithm can
hope to be approximately linear if it tries to enumerate all possible paths separately. Instead, tools
reason about paths in the aggregate, and deploy other strategies like heuristics to keep the analysis
close to linear.

HUMAN FACTORS IN INTERPRETING RESULTS

Static analysis tools are designed to produce reports that then get triaged by a human. Both the
users and the tools themselves are flawed to some extent. Naively, it would appear that the most
effective tool is the one that finds the most real bugs, i.e. the one with the highest recall. However,
even a tool with perfect recall can be worse than useless if it also has poor precision. Too many

8

12 TECHNICAL WHITEPAPER

EASING THE ADOPTION OF STATIC ANALYSIS INTO EXISTING PROJECTS IN YOUR COMPANY WITH STATIC ANALYSIS

false positives can drown out the true positives, which wastes time and makes it very difficult for a
human to tell them apart.

Consider the example in Figure 10. Not using a tool all means all possible detected bugs are
missed. On the other hand, a perfect tool finds all the bugs with no false positives. Tool A has
good recall and precision which results in finding much of the real bugs with a fair amount of false
positives. Tools B has high precision but poor recall, resulting in low false positives but a higher
number of missed real errors. Tool C has poor precision but high recall, resulting in detecting all
of the possible errors but a very high number of false positives. Realistically, a commercial static
analysis tools has to balance precision and recall to achieve make sure critical bugs aren’t missed
without burdening the development team with too many false positives.

1000

900

800

700

600 Bugs not detected by
tool

500

M False positives
400

300 M True positives

200

100 A

0 -
ToolA ToolB ToolC Notool Perfect
tool

Figure 10: A comparison of the results from 4 different tools and using no tool at all.

There are ways to efficiently process and dismiss of false positives in bulk, assuming that they are
easy to recognize, and many tools can be configured to do so automatically. It is also possible
to reduce the human workload by automatically prioritizing warnings based on risk. However, it
remains true that once this is done, the remaining warnings will still consist of some true and some
false positives, and that it requires human judgment to tell them apart.

Users dislike false positives, often intensely. This strong emotional reaction has a disproportionate
effect on the way tools are designed, configured and used. If given a choice between a configuration
A that reports 40 real defects and 10 false positives, and a configuration B that reports 50 real
bugs but with 50 false positives, users will almost always prefer the former, even though it is
finding fewer real defects. This is perfectly understandable — users are being asked to weigh an
immediate concrete negative (time spent looking at false positives) against an intangible potential
future positive (bugs that may not show up).

However, if one offsets the time and risk saved in finding those 10 bugs earlier (i.e. by avoiding
expensive and potentially dangerous bugs in finished products) against the time needed to
assess the additional 40 warnings as false positives, then it quickly becomes apparent that the

8

13 TECHNICAL WHITEPAPER

EASING THE ADOPTION OF STATIC ANALYSIS INTO EXISTING PROJECTS IN YOUR COMPANY WITH STATIC ANALYSIS

configuration B is the more economical. This is especially true in the domain of safety and security
critical software, where a defect that slips through testing can have expensive consequences. For
example, an estimate of 1 hour savings in finding a bug early against 5 minutes to assess a warning
as a false positive, still saves 10 hours in bug finding at the cost of 200 minutes of assessing the
false positives.

When interpreting the results, possibly numerous, produced by static analysis bear in mind the
delicate balance between recall, finding all possible real errors, and precision, the amount of these
reports that are real or not. Using a combination of filtering described above and concentrating
on high risk warnings it’s possible to narrow down the workload. Despite the fact there are false
positives remaining in this group, the tradeoff is detecting critical defects and security vulnerabilities
that can (or may have already) elude other forms of testing.

WORKFLOW INTEGRATION

Static analysis can be used as soon as code is available in a project. In fact, as soon as it’s been
typed in by a developer — the sooner the better. In the case of legacy, third party and existing code,
static analysis can be run on those products before even starting the current project. In general,
however, static analysis tools fit in a typical software development lifecycle as follows:

Requirements
Analysis

Deployment

Software
X Development
Dynamic Lifecycle

Analysis
Static Analysis

Integration
and Test

Implementation

Figure 11:The relative places where dynamic and static analysis tools are using during the software
development lifecycle.

Dynamic analysis tools can only be used when runnable pieces of code are ready. In terms of
integration into an agile process, Continuous Integration (Cl) and DevOps workflows, static analysis
tools are a great addition to dynamic analysis. Consider two popular tools used in these modern
processes, JIRA for feature and issue tracking and Jenkins for continuous build and integration.
CodeSonar integrates into both products in order to support teams that use these and other tools
as part of their existing agile process (or any type of process really).

14 TECHNICAL WHITEPAPER

EASING THE ADOPTION OF STATIC ANALYSIS INTO EXISTING PROJECTS IN YOUR COMPANY WITH STATIC ANALYSIS

STATIC ANALYSIS IN CONTINUOUS INTEGRATION, CONTINUOUS DEPLOYMENT PROCESSES

Continuous integration and deployment processes rely on automation in order to realize the benefits
thereof. Without efficient progress through the cycle, the continuous nature of the processes
amplifies inefficiencies. For example, introducing bugs that are inevitable whenever code is changed
and new features are implemented, the detection, diagnosis and remediation of these bugs can
slow the entire process down. Introducing static analysis in to the process ensures better quality
code introduced into the continuous process and also detects new bugs introduced before unit
testing (and often after!) is performed. Consider a typical continuous deployment cycle as in Figure
11, static analysis plays a key role in the review, develop and test phases of each cycle.

During the develop phase, static analysis provide quick feedback on found bugs, coding standard
violations and poor coding practices. A commit into source configuration control is only accepted
when the new code passes static and dynamic analysis crtieria. Deeper more details analysis is
performed during the test phases which includes tainted data and concurrency checks. During the
review phase, static analysis results warning of potential security vulnerabilities are analyzed and

evaluated.
Deep static analysis is part of the
* regression testing cycle. This includes taint
Q\o checking as well as concurrency checks.
Q = = = = = = = = = = -
Q A commit is only accepted if it passes static

and dynamic tests. Static analysis results
feed into the code review.

During developer builds static analysis
provides quick feedback, much like a
compiler error.

An independent security team reviews
outstanding risks as a white or black
box

Launch

Figure 12:The role of static analysis in a typical continuous integration/deployment process

THE ADDED BENEFIT OF BINARY ANALYSIS

GrammaTech CodeConar has the unique ability to perform advanced static analysis on binary code.
This provides added benefits to the continuous integration process, especially when incorporating
third party binaries or legacy libraries. If source code is not readily available, this does not preclude
the ability to detect bugs and security vulnerabilities. In addition, binary analysis can be used by
security teams to perform “black box” analysis of product deliverables.

EASING THE ADOPTION OF STATIC ANALYSIS INTO EXISTING PROJECTS IN YOUR COMPANY WITH STATIC ANALYSIS

Include 3 party libraries in the
whole program analysis, better
recall & precision

Black box evaluation by security
teams

Evaluation of outstanding security
risk in 3™ party binaries

Launch

Figure 13:The role of static analysis in a typical continuous integration/deployment process

JIRA INTEGRATION

Altassian’s JIRA is one of the most popular issue tracking tools. GrammaTech provides an
integration that allows for tracking of warnings as issues in JIRA so that they become part of the

regular issue/feature workload for developers. An example of this integration is show below in the
following screenshots:

Change Warning 386.449 : Leak

Because they are very similar, this waming shares annotations with waming 386.461.

S T —

State: None b

Finding: None A

Owner. @ * Auto-Assigned (7)

Processors: @ Create New JIRA Issue
[Link to Existing JIRA Issue
Note:

| Save changes || Save and Next |

Figure 14:The JIRA integration within CodeSonar allows for the creation of a JIRA issue.

16 TECHNICAL WHITEPAPER @

16 TECHNICAL WHITEPAPER

EASING THE ADOPTION OF STATIC ANALYSIS INTO EXISTING PROJECTS IN YOUR COMPANY WITH STATIC ANALYSIS

The same warning as seen with JIRA:

sqite-33.4 / SQLIT-1

CodeSonar[Leak] - 449

F ="}] Comment Assign | More - To Do InFrogress | WorkNow = Admiln -
Detalls

Type Oeoug Status T0 DO

Priarity T Highest Resoion

Jbeds MO

Descnptian

nitpci10 233,217 84.10005/waminginsiance/449 himi
Attachments

e Drop fles to attach, or browse

Activity

Al Comments ek Log Histery | Actity

T e aie N COMMmEnts yel on This isue

) Comment

Figure 15:The CodeSonar warning as an issue within JIRA.

JENKINS INTEGRATION

[¥iew Warknow)

Unresoved

Jenkins is a popular build and deployment automation server that’s gained favor with teams doing
continuous integration and delivery. CodeSonar analysis can be performance as a post-build action
in Jenkins. Any automated build process can kick off a static analysis run which will populate new
warnings related to the latest build. See below for an example of GrammaTech plugin for Jenkins:

Post-build Actions

CodeSonar

Protocol hittp
Hub address @ ${HUB}
Project name | ${PROJNAME}

Credentials

Red aleris
Maximum red alerts

Red aleris
Maximum red alerts

alex = [+] | o= Add

Configure build status conditions

0

If more red alerts, set build resultto| Unstable

2

If more red alerts, set build resultto| Failed

[=]

[=]

Figure 16: The post-build action dialog from the CodeSonar plug in within Jenkins.

SUMMARY

The adoption of static analysis as part of a development process of an existing software project
may seem daunting at first. However, there are simple techniques that can be applied to reduce the
initial volume of warnings to make the tools and the process more palatable to new users. Using the

8

17 TECHNICAL WHITEPAPER

EASING THE ADOPTION OF STATIC ANALYSIS INTO EXISTING PROJECTS IN YOUR COMPANY WITH STATIC ANALYSIS

tried and true approach of concentrating on critical issues first, deferring less critical issues provides
and preventing regression delivers the best return on investment for static analysis. GrammaTech
CodeSonar provides all the capabilities needed to introduce static analysis into your project and
integrates with leading development and agile/DevOps tools in use today. Integrating static analysis
into an existing process shouldn’t be a large hurdle for software development teams.

GrammaTech, Inc. is a leading developer of software-assurance tools and advanced cyber-
security solutions. GrammaTech helps organizations develop and release high quality software, free of harm-
ful defects that cause system failures, enable data breaches, and increase corporate liabilities in today’s

connected world. GrammaTech’s CodeSonar is used by embedded developers worldwide.

CodeSonar is a registered trademark of GrammaTech, Inc.
© GrammaTech, Inc. All rights reserved.

