
DEVSECOPS IN SAFETY CRITICAL AVIONICS SOFTWARE AND THE ROLE OF STATIC ANALYSIS

1 TECHNICAL WHITEPAPER

TRUSTED LEADERS OF SOFTWARE ASSURANCE AND ADVANCED CYBER-SECURITY SOLUTIONS
WWW.GRAMMATECH.COM

DEVSECOPS IN SAFETY CRITICAL AVIONICS
SOFTWARE AND THE ROLE OF STATIC ANALYSIS

DEVSECOPS IN SAFETY CRITICAL AVIONICS SOFTWARE AND THE ROLE OF STATIC ANALYSIS

2 TECHNICAL WHITEPAPER

INTRODUCTION

DO-178C, Software Considerations in Airborne Systems and Equipment Certification, is a standard
published by RTCA, Inc and developed jointly with EUROCAE, the European Organization for
Civil Aviation Equipment. Alongside DO-178C is D-326A (U.S.) and ED-202A (Europe) titled
“Airworthiness Security Process Specification” and is the only Acceptable Means of Compliance
(AMC) by FAA & EASA for aviation cyber-security airworthiness certification, as of 2019. Officially,
DO-326A is part of a set of documents (DO-326A/ED-202A, ED-205, DO-356A/ED-203A and
DO-355/ED-204,) that provide

In simple terms, modern avionics systems requiring certification by the FAA or EASA, must satisfy
the requirements of both DO-178C for safety considerations and DO-326A (set) for security.

DEVSECOPS

DevOps has sprouted from the combination of software development and systems operations to
make sure that software development is not done in a vacuum, but in combination with the teams
that operate these systems in the real-world.

The next step in this improvement of software development methods is DevSecOps, where
Security is included as a critical part of the development process. The realization here is that a
security failure is the same, or worse, as a quality failure. Defects in fielded product impact the
bottom line as well as company reputation. It is even worse, if a review after the fact determines
that these defects could have easily be avoided. So DevSecOps is the integration at the team level
of the teams building the software, operating the software and securing the software.

In addition, a key reason to build security into agile and continuous processes is to build upon
the knowledge that accumulates over the project. It’s not reasonable to expect software teams to
understand their complete attack surface, for example, at the beginning of the project. Building
security into day-to-day operations accumulates expertise and knowledge. Starting early is key.
With that in mind, DevSecOps is often illustrated as follows on the DevOps flowchart – security in
every part of cycle:

Figure 1: The DevOps cycle, continuous code, build, test and deploy. DevSecOps is integrating
security into all parts of the cycle. Source: “Tripwire - Security at the Speed of DevOps”

“guidance for aircraft certification to handle the threat of intentional unauthorized electronic
interaction to aircraft safety. It adds data requirements and compliance objectives, as
organized by generic activities for aircraft development and certification, to handle the
threat of unauthorized interaction to aircraft safety”

DEVSECOPS IN SAFETY CRITICAL AVIONICS SOFTWARE AND THE ROLE OF STATIC ANALYSIS

3 TECHNICAL WHITEPAPER

DEVOPS AND DEVSECOPS IN SAFETY CRITICAL SOFTWARE

A key aspect of adopting DevOps (and DevSecOps) is automating tedious, potentially error-prone,
manual steps in the development process. Part of this is the move to continuous integration (CI)
and deployment (CD). The aim of each is to speed up the time to quality and security by finding
and fixing integration and deployment issues earlier in the lifecycle. A continuous process provides
feedback in terms of defects and vulnerabilities (in addition to safety, performance, and other
quality attributes) that improves subsequent iterations. This approach has proven successful in IT
software and is gaining ground in embedded development and safety and security critical software.

The biggest challenge to adopting Agile processes, Dev(Sec)Ops and CI/CD in safety critical
software is the need to satisfy audits, validation and certification requirements. Many Agile methods
and DevOps processes and techniques aren’t defined in detail, letting teams adopt the details
as they see fit. However, safety and security standards require a rigorous, well-defined process.
This is not incompatible but it does require software teams to define and document their DevOps
tools, processes and techniques well and in detail. An important example of this is traceability.
Proving requirements are satisfied with proven validation evidence is important for proving system
functionality and airworthiness. Any DevSecOps process would have to manage traceability
precisely.

HYBRID APPROACHES TO AGILE, CI/CD AND DEV(SEC) OPS IN THE V-MODEL OF SOFTWARE
DEVELOPMENT

The traditional software development approach, often categorized as the “waterfall” method implies
that each major stage of the software development life cycle is complete from start to finish before
the next phase starts. In safety critical systems this often characterized by the V-model, as shown
below:

Figure 2:The “V model” of software development showing the typical timeline of a software
development project.

DEVSECOPS IN SAFETY CRITICAL AVIONICS SOFTWARE AND THE ROLE OF STATIC ANALYSIS

4 TECHNICAL WHITEPAPER

The V-model is important for safety critical software since it defines the dependencies of each
phase and the traceability links needed from phase to phase (e.g. requirements drive system
architecture, system testing validates requirements, etc.) This is seen as the antithesis of Agile but
adopting a hybrid approach that leverages continuous processes such as CI/CD and Dev(Sec)Ops
is still possible. Although the timeline flows towards more complete implementation, verification
and validation, it’s still possible to iterate within major phases of development. The V-model might
imply waterfall development but the standards do not dictate any process and certainly do not
prevent Agile and iterative techniques. Most software development teams building software with
high safety requirements have by now incorporated iterative and agile techniques in their process.

Define and plan with the waterfall/V model: In practice many avionics systems have requirements
defined up front as part of request for proposal (RFP) process during vendor selection. It is also
probable that milestones are established as part of large-scale airframe project where deliverables
are well defined. In such cases, planning around these requirements and milestone is necessary.
These requirements feed the design and implantation phases that can still be iterative, Agile
processes.

Agile methods for software development and verification: The software development method
chosen during the design, implementation and testing of code is left up to the manufacturer as
long as it meets the basic criteria of good engineering practices with traceability, safe and secure
practices, and reporting and documentation evidence for results (to name a few.) Agile and iterative
methods can work well in this phase despite the entire lifecycle not necessarily working within the
Agile framework. In fact, the approach leads to better results by shifting many important parts of
development earlier such as testing.

CI/CD and DevOps to reduce integration issues: Most developers would agree the biggest issue
with waterfall development is the issues that arise during integration. Often called “Big Bang
integration” many undetected issues raise their head during this phase and it results in rework
and “crunch” time to fix bugs. One of the key benefits of CI/CD is reducing these Big Bang issues
by integrating software much earlier (and continuously) than is typical in the waterfall process. In
conjunction with an iterative/Agile process, this approach required developers to create incremental
functionality is deployed and tested thoroughly before moving onto the next “chunk.” Going further
with a full DevOps approach, many of the issues in the entire software deployment and release
chain is eased by attacking them earlier, in other words “shift left” on the software development
timeline. Although CI/CD and DevOps is more challenging to adopt in embedded safety critical
systems, many teams are using this approach already. More and more projects in aviation as well
as in large scale projects in DoD are getting closer to full CI/CD and DevOps, including delivery to
the end-customer for early validation of subsets of requirements, but also for cyber security testing.
Now, these deliveries seldom include a full flyable air-frame, but do certainly include integrated sub-
systems that can be tested on test benches.

DEVSECOPS IN SAFETY CRITICAL AVIONICS SOFTWARE AND THE ROLE OF STATIC ANALYSIS

5 TECHNICAL WHITEPAPER

DEVSECOPS AND DO-326A/DO-356

DO-326A defines an air-worthiness security process (AWSP) which at a top level define certification,
security risk assessment and security development activities. Security risks evaluated during
assessment activities require security development activities to mitigate the risk to the aircraft. These
activities are meant to be integrated into the safety processes required for the software. The details
of the methods and tools for this security process are defined in DO-356, “Airworthiness Security
Methods and Considerations”. These standards encompass a large scope, much more than the
discussion here. However, as it applies to new or existing code development and maintenance there
are good arguments for adopting DevSecOps in these applications.

SECURITY IN CODE

Good engineering practices dictate adoption of coding guidelines or standards such as MISRA, or
SEI CERT guidelines. This approach assures newly developed code follows industry best practices.
However, a coding standard by itself does not prevent all complex security vulnerabilities (nor is it
practical to implement coding standards on existing code.) For example, consider a vulnerability
caused by a buffer-overrun-write, with a root cause that follows a complex path where a variable
is tainted (contains data intended to exploit) through input from the outside of the system. To find
these problems in the code more sophisticated static analysis tools are needed that include dataflow
analysis and abstract execution.

SECURITY AS CODE

An interesting approach that has come out of DevSecOps practice is the concept of treating security
requirements in the same way as safety and functional requirements. (This is, of course, required in
modern avionics software.) Guided by the outcome of detailed threat analysis and the implementation
of security controls, then to validation through testing, and of course documentation. This is the key
way to integrate security into DevOps and a good way to build security into the development culture
and have software teams communicate using a familiar language. Certainly, security implementations
that end up as actual code with associated tests can be automated in the same fashion as other code.
Automation tools apply here as would any tool that works with requirements, tests, documentation,
etc.

DEVSECOPS IN SAFETY CRITICAL AVIONICS SOFTWARE AND THE ROLE OF STATIC ANALYSIS

6 TECHNICAL WHITEPAPER

Figure 3: DevSecOps requires security requirements, controls and coding standards fed into each
part of the pipeline. Importantly, feedback is required to close the loop.

ROLE OF STATIC ANALYSIS IN DEVSECOPS IN SAFETY CRITICAL SOFTWARE

Static analysis tools are designed to integrate well with just about any software automation tool
chain and development methodology and process. This is mainly due to the fact they can be used
locally by developers at their desktop for instantaneous feedback and used to analyze a complete
build whether that’s done hourly as part of a CI/CD process, or whenever. In addition, these tools
are completely autonomous since they require no interaction with testers or developers. They are
applicable whenever it makes sense to check for bugs and security vulnerabilities in the code:

•	 Develop: This is the critical time to detect any new security vulnerabilities, as
soon as developers write new code (or test cases) even before it’s submitted to a
build or software control system. GrammaTech CodeSonar, for example, presents
these vulnerabilities immediately in the developer’s IDE just like a compiler warning,
providing easy and actionable corrective action (such as vulnerability assessment,
root causes and control and data flow traces). Turnaround time is important here,
feedback needs to be fast, such that the developer is not bogged down waiting
for builds to finish. The integration into the IDE is important here as it lessens the
cognitive load on the software developer. He does not need to leave his favorite
development environment and can review and assess the static analysis output right
there in his IDE. These tools are essential in this phase for ensuring secure coding
standards are met. Violations of the coding standard and potentially dangerous
coding practices are flagged for developers to investigate.

•	 Test: This is where all the changes from all developers are brought together for
more comprehensive testing, static analysis plays an important part in that process.

•	 Deploy: Static analysis tools analyze deployable binaries and libraries. CodeSonar,
for example, supports binary code analysis for C/C++ code that detects the same
types of vulnerabilities as source analysis. This is a good practice to detect bugs
introduced during building and deployment of deliverables.

DEVSECOPS IN SAFETY CRITICAL AVIONICS SOFTWARE AND THE ROLE OF STATIC ANALYSIS

7 TECHNICAL WHITEPAPER

•	 Review: Static analysis reporting and analysis that software teams can use to evaluate
individual warnings but also higher-level assessments of application quality and security.
Reports from SAST should be part of the cycle assessment and planning for each cycle.

These integrations into the DevSecOps cycle are illustrated below:

Figure 4: The role of Static Analysis in DevSecOps

THIRD-PARTY SOFTWARE

Use of third party code such as commercial off-the-shelf software (COTS) and open source software
is a fact of life in embedded software development and is increasingly part of avionics software. Static
analysis tools can analyze third party source and binaries to discover defects and security vulnerabilities
in software that could be impossible to test otherwise (without including it and running it, an expensive
option).

If source code is not readily available, this does not preclude the ability to detect bugs and security
vulnerabilities. In addition, security teams can use binary analysis (available in CodeSonar for Binaries) to
perform “black box” analysis of product deliverables.

DEVSECOPS IN SAFETY CRITICAL AVIONICS SOFTWARE AND THE ROLE OF STATIC ANALYSIS

8 TECHNICAL WHITEPAPER

Figure 5: The added benefit of binary analysis in a continuous integration process.

TOOL QUALIFICATION

Although software development tools used in Avionics aren’t certified in and of themselves. They
do require qualification to certification bodies such as the FAA. As such, it’s important that any
tools used have an acceptable pedigree and the ability to meet tool qualification requirements.
For example, GrammaTech CodeSonar is certified for IEC 61508, EN50128, and ISO 26262
standards, which means that an independent certification body, Exida in this case, has analyzed
the development process used to build CodeSonar and certified that it satisfies the requirements
to be used in developing safety-critical software.

The process to qualify tools for use in software certified to DO-178C is described in DO-330. In
short, this document describes the requirements that a tool needs to meet based on how the
tool is used in the process. The requirements for a code-coverage tool are different compared
to the requirements for a compiler, which are different from the requirements for a static analysis
tool. A static analysis tool is typically considered a criteria 3 tool (based on section 12.2), which
is a tool that, within the scope of its intended use, could fail to detect an error. Within these
limits, the standard then defines how to ensure that the tool behaves as expected in the software
development process. At a high level, this means that the project needs to describe how it plans to
use the tool in a Tool Operational Requirements Document, it needs to provide a Tool Qualification
Plan that describes how to proof that the tool indeed does perform correctly. The latter typically
require a set of test artefacts and expected results.

GrammaTech and its customers have a lot of experience in assisting customers with projects that
require certification and have the artefacts available to assist with tool qualification.

DEVSECOPS IN SAFETY CRITICAL AVIONICS SOFTWARE AND THE ROLE OF STATIC ANALYSIS

9 TECHNICAL WHITEPAPER

GrammaTech, Inc. is a leading developer of software-assurance tools and advanced cyber-
security solutions. GrammaTech helps organizations develop and release high quality software,
free of harmful defects that cause system failures, enable data breaches, and increase corporate
liabilities in today’s connected world. GrammaTech’s CodeSonar is used by embedded devel-
opers worldwide.

CodeSonar is a registered trademark of GrammaTech, Inc.
© GrammaTech, Inc. All rights reserved.

SUMMARY

Modern safety critical avionics software requires rigorous security engineering that interleaves with
the established safety practices in place. New cyber security standards are requiring security design
from the very beginning of product lifecycle. To address these requirements, there are advantages
to modern software development practices found in Agile, continuous integration and deployment
and DevSecOps practices. Despite many airframe projects being contrained at the high level to a “V
model” or waterfall approach, hybrid methods mixing V model and continuous process together are
a good alternative.

Focusing on the “shift left” of security and safety verification and assessment reduces the effects of
“big bang” integration that plagues the V model approach. Just as it is impossible to build-in safety
into software, the same holds true for security. Security must be part of the product concept and
built-in.

